Skip to main content
Log in

Phase gradient metasurface with broadband anomalous reflection based on cross-shaped units

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

It has been pointed out by many documents that a phase gradient metasurface with wideband characteristics can be designed by the unit with a low-quality factor (Q value). In this paper, a cross-shaped unit with a low-quality factor Q is proposed. By changing the variable parameters of the unit, it is found that the reflection phase of the unit can achieve a stable distribution of phase gradient in the frequency range of 8.0–20.0 GHz. we analyze variation of the electromagnetic field distribution on the unit with frequency and find that the size along electrical field polarization of electromagnetic field distribution area changes with frequency. Based on our design, effective size of electromagnetic field distribution area keeps meeting the subwavelength condition, thus stable phase distribution is gained across broadened bandwidth. It is found by the analysis of the phase gradient metasurface composed of seven units that the metasurface can exhibit anomalous reflection in the wide frequency band of 8.0–20.0 GHz, and the efficiency of abnormal reflection is higher in the range of 10.0–18.0 GHz. The error between the simulation results of abnormal reflection angle and the theoretical result is only − 1.5° to 0.5° after the work of comparison. Therefore, the metasurface designed by the new cross-shaped unit has a good control on the deflection direction of the reflected wave, and shows obvious advantages in widening the bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.R. Smith, J.B. Pendry, M.C. Wiltshire. Science. 305, 788–792 (2004)

    Article  ADS  Google Scholar 

  2. R.W. Ziolkowski, E. Heyman, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 64(2), 056625 (2001)

    Article  ADS  Google Scholar 

  3. H. Cory, C. Zach, Microw. Opt. Technol. Lett. 40(6), 460–465 (2004)

    Article  Google Scholar 

  4. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Science. 334, 6054:333–337 (2011)

    Article  ADS  Google Scholar 

  5. F. Qin, L. Ding, L. Zhang, F. Monticone, C.C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, C. Qiu. Sci. Adv. 2(1), e1501168 (2016)

    Article  ADS  Google Scholar 

  6. H. Shi, J. Li, A. Zhang, Y. Jiang, J. Wang, Z. Xu, S. Xia. IEEE Antennas Wirel Propag. Lett. 14, 104–107 (2015)

    Article  ADS  Google Scholar 

  7. C. Huang, W. Pan, X. Ma, X. Luo, Sci. Rep. 6, 23291 (2016)

    Article  ADS  Google Scholar 

  8. X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S.N. Burokur, A. de Lustrac, Q. Wu, C.W. Qiu, A. Alù, Adv. Mater. 27(7), 1195–1200 (2015)

    Article  Google Scholar 

  9. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, L. Zhou, Nat Mater. 11(5), 426–431 (2012)

    Article  ADS  Google Scholar 

  10. H.L. Zhu, S.W. Cheung, K.L. Chung, T.I. Yuk, IEEE Trans. Antennas Propag. 61(9), 4615–4623 (2013)

    Article  ADS  Google Scholar 

  11. X. Ding, H. Yu, S. Zhang, Y. Wu, K. Zhang, Q. Wu, IEEE Trans. Magn. 51(11), 1–1 (2015)

    Google Scholar 

  12. F. Aieta, P. Genevet, M.A. Kats, N. Yu, R. Blanchard, Z. Gaburro, F. Capasso. Nano Lett. 12(9), 4932–4936 (2012)

    Article  ADS  Google Scholar 

  13. Y. Zhang, L. Liang, J. Yang, Y. Feng, B. Zhu, J. Zhao, T. Jiang, B. Jin, W. Liu, Sci. Rep. 6, 26875 (2016)

    Article  ADS  Google Scholar 

  14. K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, T. Jiang, Sci. Rep. 6, 35968 (2016)

    Article  ADS  Google Scholar 

  15. J. Su, Y. Lu, H. Zhang, Z. Li, Y. Yang, Y. Che, K. Qi. Sci. Rep. 7, 42283 (2017)

    Article  ADS  Google Scholar 

  16. H. Sun, C. Gu, X. Chen, Z. Li, L. Liu, B. Xu, Z. Zhou, Sci. Rep. 7, 40782 (2016)

    Article  ADS  Google Scholar 

  17. C.L. Holloway, E.F. Kuester, J.A. Gordon, J. O’Hara, J. Booth, D.R. Smith. IEEE Antennas Propag. Mag. 54(2), 10–35 (2012)

    Article  ADS  Google Scholar 

  18. Y. Jang, M. Yoo, S. Lim, Opt. Express. 21(20), 24163 (2013)

    Article  ADS  Google Scholar 

  19. N. Meinzer, W.L. Barnes, I.R. Hooper, Nat Photonics. 8, 889–898 (2014)

    Article  ADS  Google Scholar 

  20. X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Science. 335(6067), 427 (2012)

    Article  ADS  Google Scholar 

  21. Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, L. Zheng, Z. Xu, A. Zhang, J.Phys. D Appl. Phys. 47(42), 425103–425109 (2014). 7)

    Article  ADS  Google Scholar 

  22. S. Kruk, B. Hopkins, I.I. Kravchenko, A. Miroshnichenko, D.N. Neshev, Y.S. Kivshar, APL Photonics. 1(3), 030801 (2016)

    Article  ADS  Google Scholar 

  23. Y. Yang, W. Wang, P. Moitra, I.I. Kravchenko, D.P. Briggs, J. Valentine, Nano Lett. 14(3), 1394–1399 (2014)

    Article  ADS  Google Scholar 

  24. Y.F. Yu, A.Y. Zhu, R. Paniagua-Domínguez, Y.H. Fu, B. Luk’yanchuk, A.I. Kuznetsov Laser Photonics Rev. 9(4), 412–418 (2015)

    Article  Google Scholar 

  25. S. Sun, K. Yang, C. Wang, T.-K. Juan, W. Chen, C. Liao, Q. He, S. Xiao, W. Kung, G. Guo, L. Zhou, D. Ping Tsai, Nano Lett. 12(12), 6223–6229 (2012)

    Article  ADS  Google Scholar 

  26. M. Pu, P. Chen, C. Wang, Y. Wang, Z. Zhao, C. Hu, C. Huang, X. Luo, Aip Adv. 3(5), 77 (2013)

    Google Scholar 

  27. H.F. Ma, Y.Q. Liu, K. Luan, T.J. Cui, Sci. Rep. 6, 39390 (2016)

    Article  ADS  Google Scholar 

  28. X. Luo, Sci. China Phys. Mech. Astron. 58, 594201 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaobin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Deng, H., Xiong, Q. et al. Phase gradient metasurface with broadband anomalous reflection based on cross-shaped units. Appl. Phys. A 124, 281 (2018). https://doi.org/10.1007/s00339-018-1645-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1645-y

Navigation