Skip to main content

Advertisement

Log in

Structural, optical and thermal characterization of PVC/SnO2 nanocomposites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The structural, optical, and thermal properties of PVC/SnO2 nanocomposites were investigated. XRD patterns were used to explore the structures of these prepared samples. Optical UV–Vis measurements were analyzed to calculate the spectroscopic optical constants of the prepared PVC/SnO2 nanocomposites. Both direct and indirect optical band gaps decreased with increasing SnO2 content. The refractive index, high frequency dielectric constant, plasma frequency, and optical conductivity values increased with SnO2. The single oscillator energy increased from 5.64 to 10.97 eV and the dispersion energy increased from 6.35 to 19.80 eV with the addition of SnO2. The other optical parameters such as optical moments, single oscillator strength, volume energy loss, and surface energy loss were calculated for different SnO2 concentrations. Raman spectra of the PVC/SnO2 nanocomposite films revealed the characteristic vibrational modes of PVC and surface phonon modes of SnO2. The thermal stability of PVC/SnO2 nanocomposite films was studied using DTA and thermogravimetric analysis. The glass transition (Tg) values abruptly changed from 46 °C for PVC to an average value of 59 °C for the polymer films doped with 2.0, 4.0, and 6.0 wt% SnO2. The weight loss decreased as the SnO2 concentration increased in the temperature range of 350–500 °C, corresponding to enhanced thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S. Ren, L.Y. Chang, S.K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulović, M. Bawendi, S. Gradečak, Nano Lett. 11(9), 3998 (2011)

    Article  ADS  Google Scholar 

  2. C.Y. Kwong, W.C.H. Choy, A.B. Djurišić, P.C. Chui, K.W. Cheng, W.K. Chan, Nanotechnology 15(9), 1156 (2004)

    Article  ADS  Google Scholar 

  3. B. Pradhan, K. Setyowati, H. Liu, D.H. Waldeck, J. Chen, Nano Lett. 8(4), 1142 (2008)

    Article  ADS  Google Scholar 

  4. E. Holder, N. Tessler, A.L. Rogach, J. Mater. Chem. 18(10), 1064 (2008)

    Article  Google Scholar 

  5. H. Bai, G. Shi, Sensors 7(3), 267 (2007)

    Article  Google Scholar 

  6. G. Broza, K. Piszczek, K. Schulte, T. Sterzynski, Compos. Sci. Technol. 67(5), 890 (2007)

    Article  Google Scholar 

  7. T. Sterzyński, J. Tomaszewska, K. Piszczek, K. Skórczewska, Compos. Sci. Technol. 70(6), 966 (2010)

    Article  Google Scholar 

  8. J.N. Coleman, U. Khan, Y.K. Gun’ko, Adv. Mater. 18(6), 689 (2006)

    Article  Google Scholar 

  9. T. Zhao, C. Hou, H. Zhang, R. Zhu, S. She, J. Wang, T. Li, Z. Liu, B. Wei, Sci. Rep. 4, 5619 (2014)

    Article  ADS  Google Scholar 

  10. G.M. Joshi, K. Deshmukh, J. Electron. Mater. 43(4), 1161 (2014)

    Article  ADS  Google Scholar 

  11. N.M. Ahmed, S.H. Mansour, S.L. Abd-El-Messieh, Mater. Design. 31(9), 4312 (2010)

    Article  Google Scholar 

  12. I.S. Elashmawi, N.A. Hakeem, L.K. Marei, F.F. Hanna, Pysica B 405(19), 4163 (2010)

    Article  ADS  Google Scholar 

  13. A. Olad, R. Nosrati, Prog. Org. Coat. 76(1), 113 (2013)

    Article  Google Scholar 

  14. A. Ebnalwaled, A. Thabet, Synth Metal 220, 374 (2016)

    Article  Google Scholar 

  15. M. Sayed, W.M. Morsi, Polym. Comp. 34(12), 2031 (2013)

    Article  Google Scholar 

  16. O. Chiscan, I. Dumitru, V. Tura, H. Chiriac, A. Stancu, IEEE Trans. Magn. 47(11), 4511 (2011)

    Article  ADS  Google Scholar 

  17. S.M. Paek, E. Yoo, I. Honma, Nano Lett. 9(1), 72 (2008)

    Article  ADS  Google Scholar 

  18. E.R. Leite, I.T. Weber, E. Longo, J.A. Varela, Adv. Mater. 12(13), 965 (2000)

    Article  Google Scholar 

  19. J. Xu, N. Tamaki, N. Miura, S.E.N.S.O.R. Yamazoe, Actuat B Chem. 3(2), 147 (1991)

    Article  Google Scholar 

  20. A.H. Salama, M. El-Hofy, Y.S. Rammah, M. Elkhatib, Nanosci. Nanotech. 6(4), 045013‏ (2015)

    Google Scholar 

  21. T.A. Taha, J. Mater. Sci. Mater. Electron. 28(16), 12108 (2017)

    Article  Google Scholar 

  22. M.A. Da Silva, M.G.A. Vieira, A.C.G. Maçumoto, M.M. Beppu, Polym. Test. 30(5), 478 (2011)

    Article  Google Scholar 

  23. V.D. Mote, Y. Purushotham, B.N. Dole, J. Theor. Appl. Phys. 6(1), 6 (2012)

    Article  ADS  Google Scholar 

  24. M. Hasan, A.N. Banerjee, M. Lee, J. Ind. Eng. Chem. 21, 828 (2015)

    Article  Google Scholar 

  25. S. El-Rabaie, T.A. Taha, A.A. Higazy, Mater. Sci. Semicond. Process. 30, 631 (2015)

    Article  Google Scholar 

  26. J.I. Pankove, Optical Processes in Semiconductors. (Dover Publications, New York, USA, 2010)

    Google Scholar 

  27. S. El-Rabaie, T.A. Taha, A.A. Higazy, Mater. Sci. Semicond. Process. 34, 88 (2015)

    Article  Google Scholar 

  28. T.A. Taha, A.S. Abouhaswa, J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-8816-7

    Google Scholar 

  29. F. Urbach, Phys. Rev. 92(5), 1324 (1953)

    Article  ADS  Google Scholar 

  30. S. El-Rabaie, T.A. Taha, A.A. Higazy, Physica B 432, 40 (2014)

    Article  ADS  Google Scholar 

  31. S. El-Rabaie, T.A. Taha, A.A. Higazy, Appl. Nanosci. 4(2), 219 (2014)

    Article  Google Scholar 

  32. G. Fanchini, A. Tagliaferro, Appl. Phys. Lett. 85(5), 730 (2004)

    Article  ADS  Google Scholar 

  33. T.A. Taha, Y.S. Rammah, J. Mater. Sci. Mater. Electron. 27(2), 1384 (2016)

    Article  Google Scholar 

  34. A.M. Sayed, W.M. Morsi, Polym. Comp. 34(12), 2031 (2013)

    Article  Google Scholar 

  35. O.G. Abdullah, D.A. Tahir, K. Kadir, J. Mater. Sci. Mater. Electron. 26(9), 6939 (2015)

    Article  Google Scholar 

  36. S.H. Wemple, M. DiDomenico Jr, Phys. Rev. B 3(4), 1338 (1971)

    Article  ADS  Google Scholar 

  37. S.H. Wemple, Phys. Rev. B 7(8), 3767 (1973)

    Article  ADS  Google Scholar 

  38. F. Yakuphanoglu, A. Cukurovali, I. Yilmaz, Physica B 351(1), 53 (2004)

    Article  ADS  Google Scholar 

  39. O.A. Azim, M.M. Abdel-Aziz, I.S. Yahia, Appl. Surf. Sci. 255(9), 4829 (2009)

    Article  ADS  Google Scholar 

  40. F. Yakuphanoglu, H. Erten, Opt. Appl. 35(4), 969 (2005)

    Google Scholar 

  41. A.M. El Sayed, S. El-Sayed, W.M. Morsi, S. Mahrous, A. Hassen, Polym. Comp. 35(9), 1842 (2014)

    Article  Google Scholar 

  42. V.B. Bhavsar, D. Jha, J. Indian, Pure Appl. Phys. 54(2), 105 (2016)

    Google Scholar 

  43. N.M. Saadatabadi, M.R. Nateghi, M.B. Zarandi, Polym. Sci. Ser. A+ 57(4), 480 (2015)

    Article  Google Scholar 

  44. S. Sarkar, N.S. Das, K.K. Chattopadhyay, Solid State Sci. 33, 58 (2014)

    Article  ADS  Google Scholar 

  45. M. Conradi, M. Zorko, I. Jerman, B. Orel, I. Verpoest, Polym. Eng. Sci. 53(7), 1448 (2013)

    Article  Google Scholar 

  46. M.E.R. Robinson, D.I. Bower, W.F. Maddams, Polymer 19(7), 773 (1978)

    Article  Google Scholar 

  47. A.K. Ojha, S.K. Srivastava, N. Peica, S. Schlucker, W. Kiefer, B.P. Asthana, J. Mol. Struct. 735–736, 349 (2005)

    Article  Google Scholar 

  48. P.S.R. Prasad, K.S. Prasad, N.K. Thakur, Spectrochim Acta A 68(4), 1096 (2007)

    Article  ADS  Google Scholar 

  49. M.A. Camacho-López, J.R. Galeana-Camacho, A. Esparza-García, C. Sánchez-Pérez, C.M. Julien, Superficies y vacío 26(3), 95 (2013)

    Google Scholar 

  50. J. Zuo, C. Xu, X. Liu, C. Wang, C. Wang, Y. Hu, Y. Qian, J. Appl. Phys. 75(3), 1835 (1994)

    Article  ADS  Google Scholar 

  51. P. Jia, L. Hu, G. Feng, C. Bo, J. Zhou, M. Zhang, Y. Zhou, RSC Adv. 7(2), 897 (2017)

    Article  Google Scholar 

  52. Y. Kayyarapu, H.B. Kumar, O. Mohommad, R. Neeruganti, Chekuri, Mater. Res. 19(5), 1167 (2016)

    Article  Google Scholar 

  53. M. Hasan, M. Lee, Prog. Nat. Sci. Mater. Int. 24(6), 579 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Taha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, T.A., Ismail, Z. & Elhawary, M.M. Structural, optical and thermal characterization of PVC/SnO2 nanocomposites. Appl. Phys. A 124, 307 (2018). https://doi.org/10.1007/s00339-018-1731-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1731-1

Navigation