Skip to main content
Log in

A 3D heterogeneous FeTiO3/TiO2@C fiber membrane as a self-standing anode for power Li-ion battery

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A three-dimensional (3D) networking FeTiO3/TiO2@C flexible fiber membrane was successfully fabricated by an electrospinning process and a controlled hot-press sintering method. This FeTiO3/TiO2@C fiber membrane displays a long-range continuous conductive networks, which can be directly used as self-standing anodes. The electrode sintered at 750 °C for 3 h possesses a reversible capacity of 205.4 mAh/g after 100 cycles at a current density of 300 mA/g. The superior cycle and rate performance can be attributed to the synergistic effect of little volume variation of TiO2 matrix, high capacity of FeTiO3 and good electrical conductivity of 3D networking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.B. Goodenough, K.S. Park. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013)

    Article  Google Scholar 

  2. M. Kotobuki, The current situation and problems of rechargeable lithium ion batteries. Open Electrochem. J. 4, 28–35 (2012)

    Article  Google Scholar 

  3. M.Z. Ge, C.Y. Cao, J.Y. Huang, S.H. Li, Z. Chen, K.Q. Zhang, S.S. Al-Dey, Y.K. Lai, A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J. Mater. Chem. A 4, 6772–6801 (2016)

    Article  Google Scholar 

  4. Y. Liu, Y. Yang, Recent progress of TiO2-based anodes for Li ion batteries. J. Nanomater. 2016, 8123652 (2016). https://doi.org/10.1155/2016/8123652

    Google Scholar 

  5. D. Z.Yang.S. Choi, K. Kerisit, J.M. Rosso, D. Wang, J. Zhang, G. Graff, J. Liu, Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J. Power Sources 192(2), 588–598 (2009)

    Article  ADS  Google Scholar 

  6. X. Jiang, X. Yang, Y. Zhu, K. Fan, P. Zhao, C. Li, Designed synthesis of graphene–TiO2–SnO2 Ternary nanocomposites as lithium-ion anode materials. New J. Chem. 37, 3671–3678 (2013)

    Article  Google Scholar 

  7. H. Wang, U. Ma, X. Huang, Y. Huang, X. Zhang, General and controllable synthesis strategy of metal oxide/Ti02 hierarchical heterostructures with improved lithium-ion battery performance. Sci. Rep. 70, 1–708 (2012)

    Google Scholar 

  8. J.S. Chen, H. Liu, S.Z. Qiao, X.W. Lou, Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage. J. Mater. Chem. 21, 5687–5692 (2011)

    Article  Google Scholar 

  9. H. Qiao, Q.H. Luo, Q.F. Wei, Y.B. Cai, F.L. Huang, Electrochemical properties of rutile TiO2 nanorods as anode material for lithium-ion batteries. Ionics 18, 667–672 (2012)

    Article  Google Scholar 

  10. K. Lee, A. Mazare, P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114(19), 9385–9454 (2014)

    Article  Google Scholar 

  11. H. Liu, W. Li, D.K. Shen, D.Y. Zhao, G.X. Wang, Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 137(40), 13161–13166 (2015)

    Article  Google Scholar 

  12. Y.M. Ren, J. Zhang, Y.Y. Liu, H.B. Li, H.J. Wei, B.J. Li, X.Y. Wang, Synthesis and superior anode performances of TiO2–carbon–rGO composites in lithium-ion batteries. ACS Appl. Mater. Interfaces 4, 4776–4780 (2012)

    Article  Google Scholar 

  13. J.I. Kim, J.W. Lee, Nanocomposite of TiO2 and mesoporous carbon for high power anode of lithium rechargeable batteries. J. Nanosci. Nanotechnol. 5(11), 9145–9150 (2015)

    Article  Google Scholar 

  14. J. Luo, X. Xia, Y. Luo, C. Guars, J. Liu, X. Qi, C.F. Ng, T. Yu, H. Zhang, H.J. Fan, Rationally designed hierarchical TiO2C@Fe203 hollow nanostructures for improved lithium ion storage. Adv. Enerev. Mater. 3, 737–743 (2013)

    Article  Google Scholar 

  15. W. Xue, X. Shi, H. Xia, Ultrafine Fe2O3 nanoflakes grafted on TiO2 nanosheet arrays as advanced anodes for lithium-ion batteries. Sci. Adv. Mater. 8(6), 1293–1297 (2016)

    Article  Google Scholar 

  16. Q. Xiong, C. Zheng, H. Chi, J. Zhang, Z.G. Ji, Reconstruction of TiO2/MnO2-C nanotube/nanoflake core/shell arrays as high-performance supercapacitor electrodes. Nanotechnology 28(5), 055405 (2016)

    Article  ADS  Google Scholar 

  17. S.S. Xiao, F. Bi, L. Zhao, L.Y. Wang, G.Q. Gai, Design and synthesis of H-TiO2/MnO2 core–shell nanotube arrays with high capacitance and cycling stability for supercapacitors. J. Mater. Sci. 52(13), 7744–7753 (2017)

    Article  ADS  Google Scholar 

  18. Y.S. Luo, J.S. Luo, W.W. Zhou, X.Y. Xiao, H.Zhang,D.Y.W. Yu, C.M. Li, H.J. Fan, T. Yu, Controlled synthesis of hierarchical graphene-wrapped TiO2@ Co3O4 coaxial nanobelt arrays for high-performance lithium storage. J. Mater. Chem. A 1(2), 273–281 (2013)

    Article  Google Scholar 

  19. N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012)

    Article  ADS  Google Scholar 

  20. Y. Wang, J.Y. Lee, H.C. Zeng, Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem. Mater. 17(15), 3899–3903 (2005)

    Article  Google Scholar 

  21. X.M. Wei, H.C. Zeng, Sulfidation of single molecular sheets of MoO3 pillared by bipyridine in nanohybrid MoO3 (4, 4′-bipyridyl)0.5. Chem. Mater. 15(2), 433–442 (2003)

    Article  Google Scholar 

  22. J. Fan, T. Wang, C. Yu, B. Tu, Z. Jiang, D. Zhao, Ordered nanostructured Tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries. Adv. Mater. 16(16), 1432–1436 (2004)

    Article  Google Scholar 

  23. T. Tao, A.M. Glushenkov, M.M. Rahman, Y. Chen, Electrochemical reactivity of ilmenite FeTi03, its nanostructures and oxide-carbon nanocomposites with lithium. Electrochim. Acta 108, 127–134 (2013)

    Article  Google Scholar 

  24. X. Guam, J. Zheng, M. Zhao, L. Li, G. Li, Synthesis of FeTi03 nanosheets with {0001} facets exposed: enhanced electrochemical performance and catalytic activity. RSC Adv. 3, 13635–13641 (2013)

    Article  Google Scholar 

  25. S.M. Guo, J.R. Liu, S. Qiu, Y.R. Wang, X.R. Yanc, N.N. Wu, S.Y. Wang, Z.H. Guo, Enhancing Electrochemical performances of TiO2 porous microspheres through hybridizing with FeTiO3 and nanocarbon. Electrochim. Acta 190, 556–565 (2016)

    Article  Google Scholar 

  26. B. Zhao, S. Jiang, C. Su, R. Cai, R. Ran, M.O. Tade, Z.P. Shao, A 3D porous architecture composed of TiO2 nanotubes connected with a carbon nanofiber matrix for fast energy storage. J. Mater. Chem. A 1(39), 12310–12320 (2013)

    Article  Google Scholar 

  27. Y.G. Huang, X.H. Zhang, X.B. Chen, H.Q. Wang, J.R. Chen, X.X. Zhong, Q.Y. Li, Electrochemical properties of MnO2-deposited TiO2 nanotube arrays 3D composite electrode for supercapacitors. Int J Hydrogen Energy 40, 14331–14337 (2015)

    Article  Google Scholar 

  28. M.S. Balogun, Y. Zhu, W.T. Qiu, Y. Luo, Y.C. Huang, C.L. Liang, X.H. Lu, Y.X. Tong, Chemically lithiated TiO2 heterostructured nanosheet anode with excellent rate capability and long cycle life for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 7(46), 25991–26003 (2015)

    Article  Google Scholar 

  29. M.X. Jing, J.Q. Li, Z.C. Pi, H.A. Zhai, L.L. Chen, S.S. Yao, J. Xiang, X.Q. Shen, X.M. Xi, K.S. Xiao, Electrospinning fabrication and enhanced performance of 3D Li3V2(PO4)3/C fiber membrane as self-standing cathodes for Li-ion battery. Electrochim. Acta 212, 898–904 (2016)

    Article  Google Scholar 

  30. M.X. Jing, Z.C. Pi, H.A. Zhai, J.Q. Li, L.L. Chen, X.Q. Shen, X.M. Xi, K.S. Xiao, Three-dimensional Li3V2(PO4)3/C nanowire and nanofiber hybrid membrane as a self-standing, binder-free cathode for lithium ion batteries. RSC Adv. 6, 71574–71580 (2016)

    Article  Google Scholar 

  31. S. Myung, N. Takahashi, S. Komaba, C.S. Yoon, Y. Sun, K. Amine, H. Yashiro, Nanostructured TiO2 and its application in lithium-ion storage. Adv. Funct. Mater. 21, 3231–3241 (2011)

    Article  Google Scholar 

  32. M. Chen, W. Li, X. Shen, G.W. Diao, Fabrication of core–shell α-Fe2O3@ Li4Ti5O12 composite and its application in the lithium ion batteries. ACS Appl. Mater. Interfaces 6, 4514–4523 (2014)

    Article  Google Scholar 

  33. L. Gao, H. Hu, G.J. Li, Q.C. Zhu, Y. Yu, Hierarchical 3D TiO2@Fe2O3 nanoframework arrays as high-performance anode materials. Nanoscale 6, 6463–6467 (2014)

    Article  ADS  Google Scholar 

  34. T. Song, H. Han, H. Choi, J.W. Lee, H. Park, S. Lee, W. Park, S. Kim, L. Liu, U. Paik, TiO2 nanotube branched tree on a carbon nanofiber nanostructure as an anode for high energy and power lithium ion batteries. Nano Res. 7(4), 491–501 (2014)

    Article  Google Scholar 

  35. W. Yue, S. Tao, J. Fu, Z. Gao, Y. Ren, Carbon-coated graphene–Cr2O3 composites with enhanced electrochemical performances for Li-ion batteries. Carbon 65, 97–104 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by National Natural Science Foundation of China (Grant no. 51474113, 51504101), the Natural Science Foundation of Jiangsu Province (Grant no. BK20150514), the Natural Science Research Program of Jiangsu Province Higher Education of China (Grant no. 14KJB430010). And we also thank the sponsorship of Jiangsu Overseas Research & Training Program for University Young & Middle-aged Teachers and Presidents.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mao-xiang Jing or Xiang-qian Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Jq., Jing, Mx., Han, C. et al. A 3D heterogeneous FeTiO3/TiO2@C fiber membrane as a self-standing anode for power Li-ion battery. Appl. Phys. A 124, 332 (2018). https://doi.org/10.1007/s00339-018-1750-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1750-y

Navigation