Skip to main content
Log in

Growth and characterizaion of urea p-nitrophenol crystal: an organic nonlinear optical material for optoelectronic device application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Urea p-nitrophenol, an organic nonlinear optical crystal was synthesized and grown adopting slow evaporation and seed rotation method. Single crystal X-ray diffraction study confirmed the formation of the desired crystal. High resolution X-ray diffraction study showed the defect nature of the crystal. The presence of functional groups in the material was confirmed by FTIR analysis. UV-Vis-NIR study indicates that the grown crystal has a wider transparency region with the lower cutoff wavelength at 423 nm. The grown crystal is thermally stable up to 120 °C as assessed by TG-DTA analysis. The optical homogeneity of the grown crystal was confirmed by birefringence study. The 1064 nm Nd-YAG laser was used to obtain laser induced surface damage threshold which was found to be 0.38, 0.25 and 0.33 GW/cm2 for (0 1 0), (1 1 − 1) and (0 1 1) planes, respectively. The dielectric study was performed to find the charge distribution inside the crystal. The hardness property of the titular material has been found using Vicker’s microhardness study. The optical nonlinearity obtained from third order nonlinear optical measurements carried out using Z-scan technique showed that these samples could be exploited for optical limiting studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. V. Chithambaram, S. Jerome Das, R. ArivudaiNambi, S. Krishnan, Solid State Sci. 14, 216–218 (2012)

    Article  ADS  Google Scholar 

  2. M. Silambarasan, A. Krishna Kumar, I. Thirunavukkarasu, R. Md Zahid, P.R. Mohan Kumar, Umarani, Spectrochim. Acta Part A 142, 101–109 (2015)

    Article  ADS  Google Scholar 

  3. C. Shanthi, P. Krishnan, Selvarajan, J. Cryst. Growth 393, 7–12 (2014)

    Article  ADS  Google Scholar 

  4. T. Prasanyaa, V. Jayaramakrishnan, M. Haris, Optik 125, 732–736 (2014)

    Article  ADS  Google Scholar 

  5. V. Chithambaram, S. Krishnan, Opt. Laser Tech. 55, 18–20 (2014)

    Article  ADS  Google Scholar 

  6. D.S. Chemla, J. Zyss, Quantum Electronics Principles and Applications Series eds. (Academic Press, Orlando, FL, 1985)

    Google Scholar 

  7. X. Xu, W. Qiu, Q. Zhou, J. Tang, F. Yang, Z. Sun, P. Audebert, J. Phys. Chem. B 112, 4913–4917 (2008)

    Article  Google Scholar 

  8. J. Xu, J. Chen, L. Chen, R. Hu, S. Wang, S. Li, J.S. Ma, G. Yang, Dyes Pigm. 109, 144 (2014)

    Article  Google Scholar 

  9. P.J. Fagan, M.D. Ward, J.C. Calabrese, J. Am. Chem. Soc. 111, 1698 (1989)

    Article  Google Scholar 

  10. RO.MU. Jauhar, S. Kalainathan, P. Murugakoothan, J.Cryst.Growth 424, 42–48 (2015)

    Article  Google Scholar 

  11. R. Rathika, Ganapathi, Raman, Optik 125, 2978–2982 (2014)

    Article  ADS  Google Scholar 

  12. K. Sunil Verma, S. Ramachandra Rao, K.S. Kar, Bartwal, Spectrochim. Acta Part A 153, 16–21 (2016)

    Article  ADS  Google Scholar 

  13. T. Uma Devi, N. Lawrence, R. Ramesh Babu, S. Selvanayagam, H. Stoeckli-Evans, K. Ramamurthi, J. Cryst. Growth 311, 3485–3490 (2009)

    Article  ADS  Google Scholar 

  14. M. Krishna Mohan, S. Ponnusamy, C. Muthamizhchelvan, Mater. Chem. Phys. 195, 224–228 (2017)

    Article  Google Scholar 

  15. S. Selvakumar, A. Leo Rajesh, J. Mater. Sci. Mater. Electron. 27, 7509–7517 (2016)

    Article  Google Scholar 

  16. G. Peramaiyan, P. Pandi, N. Vijayan, G. Bhagavannarayana, R. Mohan Kumar, J. Cryst. Growth 375, 6–9 (2013)

    Article  ADS  Google Scholar 

  17. P. Vinothkumar, R. Mohan Kumar, R. Jayavel, A. Bhaskaran, Opt. Laser Technol. 81, 145–152 (2016)

    Article  ADS  Google Scholar 

  18. P. Vinothkumar, K. Rajeswari, R. Mohan Kumar, A. Bhaskaran, Spectrochim. Acta Part A 145, 33–39 (2015)

    Article  ADS  Google Scholar 

  19. K. Sathishkumar, J. Chandresekaran, Y. Matsushita, A. Sato, C.I. Sathish, K. Yamaura, B. Babu, Optik 126, 981–984 (2015)

    Article  ADS  Google Scholar 

  20. B.K. Singh, N. Sinha, N. Singh, K. Kumar, M.K. Gupta, B. Kumar, J. Phys. Chem. Solids 71, 1774–1779 (2010)

    Article  ADS  Google Scholar 

  21. M.R. Jagadeesh, H.M. Suresh Kumar, R. Ananda, Kumari, Optik 126, 4014–4018 (2015)

    Article  ADS  Google Scholar 

  22. RO.MU. Jauhar, V. Viswanathan, P. Vivek, G. Vinitha, D. Velmurugan, P. Murugakoothan, RSC Adv. 6, 57977 (2016)

    Article  Google Scholar 

  23. M. Senthil Pandian, P. Ramasamy, Mater. Chem. Phys. 132, 1019–1028 (2012)

    Article  Google Scholar 

  24. M. Senthil Pandian, K. Boopathi, P. Ramasamy, G. Bhagavannarayana, Mater. Res. Bull. 47, 826–835 (2012)

    Article  Google Scholar 

  25. N. Renuka, N. Vijayan, R. BrijeshRathi, K. Ramesh Babu, D. Nagarajan, G. Haranath, Bhagavannarayana, Optik 123, 189–192 (2012)

    Article  ADS  Google Scholar 

  26. N. Vijayan, G. Bhagavannarayana, T. Kanagasekaran, R. Ramesh Babu, R. Gopalakrishnan, P. Ramasamy, Cryst. Res. Technol. 41(8), 784–789 (2006)

    Article  Google Scholar 

  27. M. Manivannan, S.A. Martin, M. BrittoDhas, Jose, J. Cryst. Growth 455, 161–167 (2016)

    Article  ADS  Google Scholar 

  28. K. Sangwal, Mater. Chem. Phys. 63, 145–152 (2000)

    Article  Google Scholar 

  29. E.M. Onitsch, Mikroskopia 2 (1947) 131

    Google Scholar 

  30. M. Sheik-bahae, A.L.I.A. Said, T. Wei, IEEE J. Quant. Electron. 26, 760–769 (1990)

    Article  ADS  Google Scholar 

  31. T.D. Krauss, F.W. Wise, Appl. Phys. Lett. 65, 1739 (1994)

    Article  ADS  Google Scholar 

  32. T. Cassano, R. Tommasi, M. Ferrara, F. Babudri, G.M. Farinola, F. Naso, Chem. Phys. 272, 111–118 (2001)

    Article  ADS  Google Scholar 

  33. B. Vijayalakshmi, G. Vidyavathy, Vinitha, J. Cryst. Growth 448, 82–88 (2016)

    Article  ADS  Google Scholar 

  34. C. Vesta, R. Uthrakumar, G. Vinitha, J. Ramalingam, S.J. Das, J. Cryst. Growth 311, 4016–4021 (2009)

    Article  ADS  Google Scholar 

  35. G. Anandhababu, P. Ramasamy, Spectrochim. Acta Part A 82, 521–526 (2011)

    Article  ADS  Google Scholar 

  36. R. Gomathi, S. Madeswaran, D. RajanBabu, G. Aravindan, Mater. Lett. 209, 240–243 (2017)

    Article  Google Scholar 

  37. M. DivyaBharathi, G. Ahila, J. Mohana, G. Chakkaravarthi, G. Anbalagan, Mater. Chem. Phys. 192, 215–227 (2017)

    Article  Google Scholar 

  38. C. Babeela, T.C. Sabari Girisun, G. Vinitha, J. Phys. D Appl. Phys. 48, 065102–065109 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Department of Atomic Energy Board of Research in Nuclear Sciences (DAE-BRNS), Government of India for their support by funding this Research work (Sanction Number: 34/14/55/2014-BRNS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Vinitha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, A., Manikandan, N., Jauhar, R.M. et al. Growth and characterizaion of urea p-nitrophenol crystal: an organic nonlinear optical material for optoelectronic device application. Appl. Phys. A 124, 419 (2018). https://doi.org/10.1007/s00339-018-1767-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1767-2

Navigation