Skip to main content
Log in

Detection of DNA hybridization using graphene-coated black phosphorus surface plasmon resonance sensor

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, graphene-coated black phosphorus at the metal surface for the detection of DNA hybridization event is numerically demonstrated. The strategy consists of placing the sensing medium on top of black phosphorus–graphene-coated SPR which interfaces with phosphate-buffered saline solution carrying single-stranded DNA. Upon hybridization with its complementary DNA, desorption of the nanostructures takes place and thus enables the sensitive detection of the DNA hybridization event. The proposed sensor exhibits a sensitivity (125 ο/RIU), detection accuracy (0.95) and quality factor (13.62 RIU−1) for complementary DNA. In comparison with other reported papers, our suggested sensor provides much better performance. Thus, this label-free DNA detection platform should spur off new interest towards the use of black phosphorus–graphene-coated SPR interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

A:

Adenine

ATR:

Attenuated total reflection

BP:

Black phosphorus

C:

Cytocine

c a :

Concentration of adsorbed molecule

DNA:

Deoxyribonucleic acid

DA:

Detection accuracy

dsDNA:

Double-stranded DNA

FWHM:

Full width at half maximum

Au:

Gold

G:

Guanine

MoS2 :

Molybdenum disulfide

MoSe2 :

Molybdenum diselenide

nM:

Nanomolar

λ :

Operating wavelength

PBS:

Phosphate-buffered saline

Q.F:

Quality factor

R:

Reflectance

RI:

Refractive index

RIU:

Refractive index unit

n S :

RI of sensing medium before hybridization

n H :

RI of sensing medium after DNA hybridization

Adsorbate:

RI change due to DNA

S:

Sensitivity

ssDNA:

Single-stranded DNA

SPR:

Surface plasmon resonance

SPW:

Surface plasmon wave

TMDC:

Transition metal dichalcogenides

T:

Thymine

TM:

Transverse magnetic

WS2 :

Tungsten disulfide

WSe2 :

Tungsten diselenide

k spw :

Wave vector of evanescent wave

k ev :

Wave vector of surface plasmon wave

References

  1. K. Tamersit, F. Djeffal, Double-gate graphene nanoribbon field-effect transistor for DNA and gas sensing applications: simulation study and sensitivity analysis. IEEE Sens. J. 16(11), 4180–4191 (2016)

    Article  Google Scholar 

  2. T.-J. Wang, C.-W. Tu, F.-K. Liu, Integrated-optic surface-plasmon-resonance biosensor using gold nanoparticles by bipolarization detection. IEEE J. Sel. Top. Quantum Electron. 11(2), 493–499 (2005)

    Article  ADS  Google Scholar 

  3. N.-F. Chiu, W.-C. Lee, T.-S. Jiang, Constructing a novel asymmetric dielectric structure toward the realization of high performance surface plasmon resonance biosensors. IEEE Sens. J. 13(9), 3483–3489 (2013)

    Article  Google Scholar 

  4. A. Madeira, E. Vikeved, A. Nilsson, B. Sjogren, P.E. Andrén, P. Svenningsson, Identification of protein-protein interactions by surface plasmon resonance followed by mass spectrometry. Curr. Protoc. Protein Sci. 65, 19.21.1–19.21.9 (2011)

    Google Scholar 

  5. J. Majka, C. Speck, Analysis of protein-DNA interactions using surface plasmon resonance. Adv. Biochem. Eng. Biotechnol. 104, 13–36 (2007)

    Google Scholar 

  6. H.F. Teh, W.Y.X. Peh, X. Su, J.S. Thomsen, Characterization of protein-DNA interactions using surface plasmon resonance spectroscopy with various assay schemes. Biochemistry 46(8), 2127–2135 (2007)

    Article  Google Scholar 

  7. J.B. Maurya, Y.K. Prajapati, V. Singh, J.P. Saini, R. Tripathi, Improved performance of the surface plasmon resonance biosensor based on graphene or MoS2 using silicon. Opt. Commun. 359, 426–434 (2016)

    Article  ADS  Google Scholar 

  8. J. Homola, Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003)

    Article  Google Scholar 

  9. Q. Ouyang, S. Zeng, L. Jiang, J. Qu, X.-Q. Dinh, J. Qian, S. He, P. Coquet, K.-T. Yong, Two-dimensional transition metal dichalcogenide enhanced phase-sensitive plasmonic biosensors: theoretical insight. J. Phys. Chem. C 121(11), 6282–6289 (2017)

    Article  Google Scholar 

  10. L. Wu, Y. Jia, L. Jiang, J. Guo, X. Dai, Y. Xiang, D. Fan, Sensitivity improved spr biosensor based on the MoS2/graphene-aluminum hybrid structure. J. Lightwave Technol. 35(1), 82–87 (2017)

    Article  ADS  Google Scholar 

  11. J.B. Maurya, Y.K. Prajapati, A comparative study of different metal and prism in the surface plasmon resonance biosensor having MoS2-graphene. Opt. Quantum Electron. 48(5), 1–12 (2016)

    Article  Google Scholar 

  12. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)

    Article  ADS  Google Scholar 

  13. L. Wu, H.S. Chu, W.S. Koh, E.P. Li, Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 18, 14395–14400 (2010)

    Article  ADS  Google Scholar 

  14. J. Qiao, X. Kong, Z.X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475–4475 (2014)

    Google Scholar 

  15. S.D. Sarma, S. Adam, E.H. Hwang, E. Rossi, Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83(2), 407–470 (2011)

    Article  ADS  Google Scholar 

  16. M. Rahman, M. Anower, M. Hasan, M. Hossain, M. Haque, Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor. Opt. Commun. 396, 36–43 (2017)

    Article  ADS  Google Scholar 

  17. S.Y. Cho, Y. Lee, H.J. Koh, H. Jung, J.S. Kim, H.W. Yoo, J. Kim, H.T. Jung, Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene. Adv. Mater. 28(32), 7020–7028 (2016)

    Article  Google Scholar 

  18. N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, J. Zhang, Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 138(1), 300–305 (2016)

    Article  Google Scholar 

  19. Y. Cai, G. Zhang, Y.W. Zhang, Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 4, 6677–6682 (2016)

    Article  Google Scholar 

  20. L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, D. Fan, Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B 249, 542–548 (2017)

    Article  Google Scholar 

  21. J.B. Maurya, Y.K. Prajapati, V. Singh, J.P. Saini, R. Tripathi, Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer. Opt. Quantum Electron. 47, 3599–3611 (2015)

    Article  Google Scholar 

  22. Y. Cai, G. Zhang, Y.-W. Zhang, Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. J. Phys. Chem. C 119(24), 13929–13936 (2015)

    Article  Google Scholar 

  23. H. Karimi, R. Yusof, R. Rahmani, H. Hosseinpour, M.T. Ahmadi, Development of solution-gated graphene transistor model for biosensors. Nanoscale Res. Lett. 9, 1–11 (2014)

    Article  Google Scholar 

  24. L. Diéguez, N. Darwish, M. Mir, E. Martinez, M. Moreno, J. Samitier, Effect of the refractive index of buffer solutions in evanescent optical biosensors. Sens. Lett. 7(5), 851–855 (2009)

    Article  Google Scholar 

  25. V. Ball, J.J. Ramsden, Buffer dependence of refractive index increments of protein solutions. Biopolymers 46, 489–492 (1998)

    Article  Google Scholar 

  26. L.J. Wang, G. Cao, T. Tu, H.O. Li, C. Zhou, X.J. Hao, Z. Su, G.C. Guo, H.W. Jiang, G.P. Guo, A graphene quantum dot with a single electron transistor as an integrated charge sensor. Appl. Phys. Lett. 97(26), 262113 (2010)

    Article  ADS  Google Scholar 

  27. A. Verma, A. Prakash, R. Tripathi, Performance analysis of graphene based surface plasmon resonance biosensors for detection of Pseudomonas-like bacteria. J. Opt. Quantum Electron. 47, 1197–1205 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported under Project no. 34/14/10/2017-BRNS/34285 by Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alka Verma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Verma, A., Raikwar, S. et al. Detection of DNA hybridization using graphene-coated black phosphorus surface plasmon resonance sensor. Appl. Phys. A 124, 394 (2018). https://doi.org/10.1007/s00339-018-1804-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1804-1

Navigation