Skip to main content
Log in

Crystallization by laser annealing of amorphous SnO2 films on the Si (100) surface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thin films of SnO2 were fabricated on Si wafer (100) substrates in a vacuum chamber at 10−5 Torr using the pulsed laser deposition technique. An excimer laser was used to ablate a SnO2 polycrystalline target and deposit thin films on a Si support which was maintained at 300 °C. The deposited amorphous films were analyzed using X-ray diffraction and scanning electron microscopy. To convert the films to crystalline form, two approaches were used: oven annealing and pulsed laser annealing. Both annealing techniques resulted in crystalline thin films of SnO2 in the rutile structure, with oven annealing resulting in higher quality crystalline films. Thickness of the as-deposited SnO2 film can determine crystalline phase of the annealed film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.K. Sinha, R. Bhattacharya, S.K. Ray, I. Manna, Influence of deposition temperature on structure and morphology of nanostructured SnO2 films synthesized by pulsed laser deposition. Mater. Lett. 65, 146–149 (2011)

    Article  Google Scholar 

  2. H. Fan, S.A. Reid, Phase transformations in pulsed laser deposited nanocrystalline tin oxide thin films. Chem. Mater. 15, 564–567 (2003)

    Article  Google Scholar 

  3. M.J. Madou, S.R. Morrison, Chemical Sensing with Solid State Devices (Academic, Boston, 1989)

    Google Scholar 

  4. A.P. Caricato, A. Luches, R. Rella, Nanoparticle thin films for gas sensors prepared by matrix assisted pulsed laser evaporation. Sensors 9, 2682–2696 (2009)

    Article  Google Scholar 

  5. R. Presley, C. Munsee, C.-H. Park, D. Hong, J. Wager, D. Keszler, Tin oxide transparent thin-film transistors. J. Phys. D Appl. Phys. 37, 2810–2813 (2004)

    Article  ADS  Google Scholar 

  6. K. Sajiz, A.R. Mary, Tin oxide based P and N-type thin film transistors developed by RF sputtering. ECS J. Sol. State Sci. Technol. 4, Q101–Q104 (2015)

    Article  Google Scholar 

  7. S. Lee, D. Hoffman, A. Jacobson, T. Lee, Transparent, homogeneous tin oxide (SnO2) thin films containing SnO2-coated gold nanoparticles. Chem. Mater. 25, 4697–4702 (2013)

    Article  Google Scholar 

  8. G. Norman, N.E. Alan, Chemistry of the Elements (Pergamon Press, Oxford, 1984)

    Google Scholar 

  9. W. Baumgardner, J. Choi, K. Bian, L. Kourkoutis, D.-M. Smilgies, M. Thompson, T. Hanrath, Pulsed laser annealing of thin films of self-assembled nanocrystals. ACS Nano 5, 7010–7019 (2011)

    Article  Google Scholar 

  10. K. Shinoda, T. Nakajima, T. Tsuchiya, In situ monitoring of excimer laser annealing of tin-doped indium oxide films for the development of a low-temperature fabrication process. Appl. Surf. Sci. 292, 1052–1058 (2014)

    Article  ADS  Google Scholar 

  11. L.S. Parshina, O.A. Novodvorsky, O.D. Khramova, I.A. Petukhov, V.A. Mikhalevsky, A.A. Lotin, E.A. Cherebilo, V.Y. Panchenko, Properties of SnO2:Sb films produced on flexible organic substrates by droplet-free pulsed laser deposition method. Opt. Quant. Electron. 48, 316–319 (2016)

    Article  Google Scholar 

  12. S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, Y. Jin, Fabrication of p-type SnO2 films via pulsed laser deposition method by using Sb as dopant. Appl. Surf. Sci. 286, 417–420 (2013)

    Article  ADS  Google Scholar 

  13. S.K. Sinha, T. Rakshit, S.K. Ray, I. Manna, Characterization of ZnO–SnO2 thin film composites prepared by pulsed laser deposition. Appl. Surf. Sci. 257, 10551–10556 (2011)

    Article  ADS  Google Scholar 

  14. C. Ristoscu, L. Cultrera, A. Dima, A. Perrone, R. Cutting, H.L. Du d, A. Busiakiewicz, Z. Klusek, P.K. Datta, S.R. Rose, SnO2 nanostructured films obtained by pulsed laser ablation deposition. Appl. Surf. Sci. 247, 95–100 (2005)

    Article  ADS  Google Scholar 

  15. J.-S. Lee, S.-M. Song, S.-H. Cho, M.-K. Song, Y.-H. Kim, J.-Y. Kwon, M.-K. Han, Excimer Laser annealed low temperature solution-processed oxide thin film transistors, in: Active Matrix Flat Panels and Devices Conference (IEEE, 2012), pp. 135–138

  16. D. Scorticati, A. Illiberi, T. Bor, S.W.H. Eijt, H. Schut, G.R.B.E. Römer, D.F.D. Lange, A.J.H.I.T. Veld, Annealing of SnO2 thin films by ultra-short laser pulses. Opt. Express 22, A609–A621 (2014)

    Article  Google Scholar 

  17. D. Scorticati, A. Illiberic, G.R.B.E. Römera, T. Bora, W. Ogiegloa, M.K. Gunnewieka, A. Lenferinka, C. Ottoa, J.Z.P. Skolskia, F. Grobc, D.F.D. Langed, A.J.H.I.T. Veld, Optical and electrical properties of SnO2 thin films after ultra-short pulsed laser annealing. Proc. SPIE 8826, 88260I-88261–88260I-882612 (2013)

    Google Scholar 

  18. H. Du, M. Lv, J. Meng, W. Zhu, Tri-band transparent conductive coating of indium tin oxide. Appl. Opt. 55, D115–D119 (2016)

    Article  ADS  Google Scholar 

  19. X. Yu, T.J. Marks, A. Facchetti, Metal oxides for optoelectronic applications. Nat. Mater. 15, 383–396 (2016)

    Article  ADS  Google Scholar 

  20. T. Tsuchiya, A. Watanabe, T. Kumagai, S. Mizuta, Epitaxial growth of tin oxide films on (0 0 1) TiO2 substrates by KrF and XeCl excimer laser annealing. Appl. Surf. Sci. 248, 118–122 (2005)

    Article  ADS  Google Scholar 

  21. E. Brunet, T. Maier, G.C. Mutinati, S. Steinhauer, A. Köck, C. Gspan, W.G. b, Comparison of the gas sensing performance of SnO2 thin film and SnO2 nanowire sensors. Sens. Actuators B 165, 110–118 (2012)

    Article  Google Scholar 

  22. E.R. Brown, W-D. Zhang, H. Chen, G.T. Mearini, THz behavior of indium-tin-oxide films on p-Si substrates. Appl. Phys. Lett. 107, 091102 (2015)

    Article  ADS  Google Scholar 

  23. R. Pruna, F. Palacio, M. Martinez, O. Blazquez, S. Hernandez, B. Garrido, M. Lopez, Organosilane-functionalization of nanostructured indium tin oxide films. Interface Focus 6, 20160056 (2016)

    Article  Google Scholar 

  24. A. Laskin, V. Laskin, Imaging techniques with refractive beam shaping optics, in: Laser Beam Shaping VIII, SPIE Proceedings, vol. 8490 (2012)

  25. S.M. Ali, S.T. Hussain, S.A. Bakar, J. Muhammad, N. Rehman, Effect of doping on the structural and optical properties of SnO2 thin films fabricated by aerosol assisted chemical vapor deposition. J. Phys. Conf. Ser. 439, 012013 (2013)

    Article  Google Scholar 

  26. I.-S. Yu, Y.-W. Wang, H.-E. Cheng, Z.-P. Yang, C.-T. Lin, Surface passivation and antireflection behavior of ALD TiO2 on n-type silicon for solar cells. Int. J. Photoenergy 7, 431614 (2013)

    Google Scholar 

  27. T.W. Hansen, A.T. DeLaRiva, S.R. Challa, A.K. Datye, Sintering of catalytic nanoparticles: particle migration or ostwald ripening? Acc. Chem. Res. 46, 1720–1730 (2013)

    Article  Google Scholar 

  28. Z. Kozakova, I. Kuritka, N.E. Kazantseva, V. Babayan, M. Pastorek, M. Machovsky, P. Bazant, P. Saha, The formation mechanism of iron oxide nanoparticles within the microwave-assisted solvothermal synthesis and its correlation with the structural and magnetic properties. Dalton Trans. 44, 21099–21108 (2015)

    Article  Google Scholar 

  29. T. Hawa, M.R. Zachariaha, Coalescence kinetics of unequal sized nanoparticles. J. Aerosol Sci. 37, 1–15 (2005)

    Article  ADS  Google Scholar 

  30. S.H. Ehrman, M.I. Aquino-Class, M.R. Zachariah, Effect of temperature and vapor-phase encapsulation on particle growth and morphology. J. Mater. Res. 14, 1664–1671 (1999)

    Article  ADS  Google Scholar 

  31. A.K. Singh, U.T. Nakate, Microwave synthesis, characterization and photocatalytic properties of SnO2 nanoparticles. Adv. Nanopart. 2, 66–70 (2013)

    Article  Google Scholar 

  32. N. Manjula, G. Selvan, R. Perumalsamy, R. Thirumamagal, A. Ayeshamariam, M. Jayachandran, Synthesis, structural and electrical characterizations of SnO2 nanoparticles. Int. J. Nanoelectron. Mater. 9, 143–156 (2016)

    Google Scholar 

  33. R. Bargougui, K. Omri, A. Mhemdi, S. Ammar, Synthesis and characterization of SnO2 nanoparticles: effect of hydrolysis rate on the optical properties. Adv. Mater. Lett. 6, 816–819 (2015)

    Google Scholar 

  34. G.E. Patil, D.D. Kajale, V.B. Gaikwad, G.H. Jain, Preparation and characterization of SnO2 nanoparticles by hydrothermal route. Int. Nano Lett. 2, 46–51 (2012)

    Article  Google Scholar 

  35. N. Manjula, G. Selvan, R. Perumalsamy, R. Thirumamagal, A. Ayeshamariam, M. Jayachandran, Synthesis, structural and electrical characterizations of SnO2 nanoparticles. Int. J. Nanoelectr. Mater. 9, 143–156 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. R. Musaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Musaev, O.R., Wrobel, J.M. et al. Crystallization by laser annealing of amorphous SnO2 films on the Si (100) surface. Appl. Phys. A 124, 499 (2018). https://doi.org/10.1007/s00339-018-1919-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1919-4

Navigation