Skip to main content
Log in

Detecting the thermoplasmonic effect using ellipsometry parameters for self-assembled gold nanoparticles within a polydimethylsiloxane matrix

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Light-to-heat conversion using active plasmonic materials is essential in wide-ranging applications, such as sensing, photonics, drug delivery, biomedical imaging, photothermal tumor therapy, and optoelectronics. In this work, we studied the thermoplasmonic effect and performed an optical analysis of different concentrations of self-assembled gold nanoparticles in transparent dielectric polydimethylsiloxane polymer medium under continuous-wave radiations. Composite samples were prepared and investigated experimentally by ellipsometry method and thermal photography. The gold-nanoparticle content of each composite film directly increased the generated temperature. The structure and optical properties of the samples under ambient conditions were obtained efficiently depending on the ellipsometry parameters for each polarized light. Results showed that the prolongation of the incubation time led to a lower phase value for p polarization than that for s polarization. This finding was due to the change in ellipsometry parameters and, thus, the thermoplasmonic effect. This new method of investigating the thermoplasmonic effect can provide new insights into the medical applications of plasmonic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Tordera, D. Zhao, A.V. Volkov, X. Crispin, M.P. Jonsson, Thermoplasmonic semitransparent nanohole electrodes. Nano Lett. 17(5), 3145–3151 (2017). https://doi.org/10.1021/acs.nanolett.7b00574

    Article  ADS  Google Scholar 

  2. H.H. Richardson, M.T. Carlson, P.J. Tandler, P. Hernandez, A.O. Govorov, Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal NPs solutions. Nano Lett. 9(3), 1139–1146 (2009). https://doi.org/10.1021/nl8036905

    Article  ADS  Google Scholar 

  3. A. Politano, G. Di Profio, E. Fontananova, V. Sanna, A. Cupolillod, E. Curcio, Overcoming temperature polarization in membrane distillation by thermoplasmonic effects activated by Ag nanofillers in polymeric membranes. Desalination (2018). https://doi.org/10.1016/j.desal.2018.03.006

    Article  Google Scholar 

  4. A. Politano, P. Argurio, G. Di Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H.A. Arafat, E. Curcio, Photothermal membrane distillation for seawater desalination. Adv. Mater. 29, 1603504 (2017). https://doi.org/10.1002/adma.201603504

    Article  Google Scholar 

  5. S. Baral, A.J. Green, H.H. Richardson, Effect of ions and ionic strength on surface plasmon absorption of single gold nanowires. ACS Nano 10(6), 6080–6089 (2016). https://doi.org/10.1021/acsnano.6b01677

    Article  Google Scholar 

  6. N. Karker, G. Dharmalingam, M.A. Carpenter, Thermal energy harvesting plasmonic based chemical sensors. ACS Nano 8(10), 10953–10962 (2014). https://doi.org/10.1021/nn504870b

    Article  Google Scholar 

  7. A.J. Green, A.A. Alaulamie, S. Baral, H.H. Richardson, Ultrasensitive molecular detection using thermal conductance of a hydrophobic gold–water interface. Nano Lett. 13(9), 4142–4147 (2013). https://doi.org/10.1021/nl401717y

    Article  ADS  Google Scholar 

  8. F. Yi, H. Zhu, J.C. Reed, E. Cubukcu, Plasmonically enhanced thermomechanical detection of infrared radiation. Nano Lett. 13(4), 1638–1643 (2013). https://doi.org/10.1021/nl400087b

    Article  ADS  Google Scholar 

  9. M. Pelton, J. Aizpurua, G. Bryant, Metal-nanoparticle plasmonics. Laser Photonics Rev. 2(3), 136–159 (2008). https://doi.org/10.1002/lpor.200810003

    Article  ADS  Google Scholar 

  10. Y. Sonnefraud, A. Leen Koh, D. McComb, S. Maier, Nanoplasmonics: engineering and observation of localized plasmon modes. Laser Photonics Rev. 6(3), 277–295 (2011). https://doi.org/10.1002/lpor.201100027

    Article  ADS  Google Scholar 

  11. Y. Jin, Q. Li, G. Li, M. Chen, J. Liu, Y. Zou, S. Fan, Enhanced optical output power of blue light-emitting diodes with quasi-aligned gold nanoparticles. Nanoscale Res. Lett. 9(1), 7 (2014). https://doi.org/10.1186/1556-276x-9-7

    Article  ADS  Google Scholar 

  12. G.F. Paciotti, D.G. Kingston, L. Tamarkin, Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev. Res. 67(1), 47–54 (2006). https://doi.org/10.1002/ddr.20066

    Article  Google Scholar 

  13. L. Paasonen, T. Laaksonen, C. Johans, M. Yliperttula, K. Kontturi, A. Urtti, Gold nanoparticles enable selective light-induced contents release from liposomes. J. Control Release 122(1), 86–93 (2007). https://doi.org/10.1016/j.jconrel.2007.06.009

    Article  Google Scholar 

  14. W. He, K. Ai, C. Jiang, Y. Li, X. Song, L. Lu, Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy. Biomaterials 132, 37–47 (2017). https://doi.org/10.1016/j.biomaterials.2017.04.007

    Article  Google Scholar 

  15. N. Manuchehrabadi, A. Attaluri, H. Cai, R. Edziah, E. Lalanne, C. Bieberich, L. Zhu, MicroCT imaging and in vivo temperature elevations in implanted prostatic tumors in laser photothermal therapy using gold nanorods. J. Nanotechnol. Eng. Med. 3(2), 021003 (2012). https://doi.org/10.1115/1.4007161

    Article  Google Scholar 

  16. A.O. Govorov, H.H. Richardson, Generating heat with metal nanoparticles. Nano Today 2(1), 30–38 (2007). https://doi.org/10.1016/s1748-0132(07)70017-8

    Article  Google Scholar 

  17. A. Politano, A. Cupolillo, G. Di Profio, H.A. Arafat, G. Chiarello, E. Curcio, When plasmonics meets membrane technology. J. Phys. Condens. Matter 28, 363003 (2016). https://doi.org/10.1088/0953-8984/28/36/363003

    Article  Google Scholar 

  18. A. Agarwal, M.S. Vitiello, L. Viti, A. Cupolillo, A. Politano, Plasmonics with two-dimensional semiconductors: from basic research to technological applications, Nanoscale 10, 8938 (2018). https://doi.org/10.1039/C8NR01395K

    Article  Google Scholar 

  19. A. Politano, L. Viti, M.S. Vitiello, Optoelectronic devices, plasmonics and photonics with topological insulators. APL Mater. 5, 035504 (2017). https://doi.org/10.1063/1.4977782

    Article  ADS  Google Scholar 

  20. A. Gugliuzza, A. Politano, E. Drioli, The advent of graphene and other two-dimensional materials in membrane science and technology. Curr. Opin. Chem. Eng. 16, 78 (2017). https://doi.org/10.1016/j.coche.2017.03.003

    Article  Google Scholar 

  21. N.J. Hogan, A.S. Urban, C.Y. Orozco, A. Pimpinella, P. Nordlander, N.J. Halas, Nano Lett. 14, 4640 (2014)

    Article  ADS  Google Scholar 

  22. G. Baffou, R. Quidant, C. Girard, Heat generation in plasmonic nanostructures: influence of morphology. Appl. Phys. Lett. 94(15), 153109 (2009). https://doi.org/10.1063/1.3116645

    Article  ADS  Google Scholar 

  23. J. Martinez-Perdiguero, A. Retolaza, A. Juarros, D. Otaduy, S. Merinoa, Enhanced transmission through gold nanohole arrays fabricated by thermal nanoimprint lithography for surface plasmon based biosensors. Procedia Eng. 47, 805–808 (2012). https://doi.org/10.1016/j.proeng.2012.09.269

    Article  Google Scholar 

  24. W. Zhang, Z. Li, Z. Guan, H. Shen, W. Yu, W. He, H. Xu, Thermal detection of surface plasmons on gold nanohole arrays. Chin. Sci. Bull. 57(1), 68–71 (2012). https://doi.org/10.1007/s11434-011-4810-7

    Article  Google Scholar 

  25. J. Martinez-Perdiguero, A. Retolaza, D. Otaduy, A. Juarros, S. Merino, Real-time label-free surface plasmon resonance biosensing with gold nanohole arrays fabricated by nanoimprint lithography. Sensors 13(10), 13960–13968 (2013). https://doi.org/10.3390/s131013960

    Article  Google Scholar 

  26. M. Virk, K. Xiong, M. Svedendahl, M. Käll, A.B. Dahlin, A thermal plasmonic sensor platform: resistive heating of nanohole arrays. Nano Lett. 14(6), 3544–3549 (2014). https://doi.org/10.1021/nl5011542

    Article  ADS  Google Scholar 

  27. J.B. Herzog, M.W. Knight, D. Natelson, Thermoplasmonics: quantifying plasmonic heating in single nanowires. Nano Lett. 14(2), 499–503 (2014). https://doi.org/10.1021/nl403510u

    Article  ADS  Google Scholar 

  28. A. Elkalsh, A. Vukovic, P.D. Sewell, T.M. Benson, Electro-thermal modeling for plasmonic structures in the TLM method. Opt. Quant. Electron. (2016). https://doi.org/10.1007/s11082-016-0542-x

    Article  Google Scholar 

  29. J.R. Dunklin, G.T. Forcherio, K.R. Berry, D.K. Roper, Asymmetric gold nanoparticle reduction into polydimethylsiloxane thin films, in Plasmonics: Metallic Nanostructures and Their Optical Properties XII. (2014). https://doi.org/10.1117/12.2061908

  30. K.R. Berry, J.R. Dunklin, P.A. Blake, D.K. Roper, Thermal dynamics of plasmonic nanoparticle composites. J. Phys. Chem. C 119(19), 10550–10557 (2015). https://doi.org/10.1021/jp512701v

    Article  Google Scholar 

  31. J.R. Dunklin, C. Bodinger, G.T. Forcherio, D. Keith Roper, Plasmonic extinction in gold nanoparticle-polymer films as film thickness and nanoparticle separation decrease below resonant wavelength. J. Nanophotonics 11(1), 016002 (2017). https://doi.org/10.1117/1.jnp.11.016002

    Article  ADS  Google Scholar 

  32. G. Baffou, R. Quidant, Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 7(2), 171–187 (2012). https://doi.org/10.1002/lpor.201200003

    Article  ADS  Google Scholar 

  33. J.R. Adleman, D.A. Boyd, D.G. Goodwin, D. Psaltis, Heterogeneous catalysis mediated by plasmon heating. Nano Lett. 9(12), 4417 (2009)

    Article  ADS  Google Scholar 

  34. U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, Th Burgi, Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling. J. Mater. Chem. C 2, 7927 (2014)

    Article  Google Scholar 

  35. M. Lisunova, J.R. Dunklin, S.V. Jenkins, J. Chen, D.K. Roper, The unusual visible photothermal response of free standing multilayered films based on plasmonic bimetallic nanocages. RSC Adv. 5(20), 15719–15727 (2015). https://doi.org/10.1039/c5ra00682a

    Article  Google Scholar 

  36. F. Sohrabi, S.M. Hamidi, Fabrication methods of plasmonic and magnetoplasmonic crystals: a review. Eur. Phys. J. Plus (2017). https://doi.org/10.1140/epjp/i2017-11294-2

    Article  Google Scholar 

  37. E. McLeod, A. Ozcan, Nano-imaging enabled via self-assembly. Nano Today 9(5), 560–573 (2014). https://doi.org/10.1016/j.nantod.2014.08.005

    Article  Google Scholar 

  38. S. Scarano, C. Berlangieri, E. Carretti, L. Dei, M. Minunni, Tunable growth of gold nanostructures at a PDMS surface to obtain plasmon rulers with enhanced optical features. Microchim. Acta 184(9), 3093–3102 (2017). https://doi.org/10.1007/s00604-017-2323-z

    Article  Google Scholar 

  39. S. Cheong, S. Krishnan, S.H. Cho, Modeling of plasmonic heating from individual gold nanoshells for near-infrared laser-induced thermal therapy. Med. Phys. 36(10), 4664–4671 (2009). https://doi.org/10.1118/1.3215536

    Article  Google Scholar 

  40. G. Baffou, R. Quidant, F.J. García de Abajo, Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4(2), 709–716 (2010). https://doi.org/10.1021/nn901144d

    Article  Google Scholar 

  41. L.D. Sio, T. Placido, R. Camperelli, M.L. Curi, M. Striccoli, N. Tayan, T.J. Bunning, Next generation of thermos-plasmonic technologies and plasmonic nanoparticles in optoelectronics. Prog. Quantum Electron. 41, 23–70 (2015)

    Article  ADS  Google Scholar 

  42. C. Minnie, P. Milani, Metal-polymer nanocomposite with stable plasmonic tuning under cyclic strain conditions. Appl. Phys. Lett. 107, 073106 (2015)

    Article  ADS  Google Scholar 

  43. V.S. Gerasimov, A.E. Ershov, S.V. Karpov, A.P. Gavrilyuk, V.I. Zakomirnyi, I.L. Rasskazov, S.P. Polyutov, Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited]: publisher’s note. Opt. Mater. Express 7(3), 799 (2017). https://doi.org/10.1364/ome.7.000799

    Article  ADS  Google Scholar 

  44. T.W.H. Oates, H. Wormeester, H. Arwin, Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry. Prog. Surf. Sci. 86(11), 328–376 (2011)

    Article  ADS  Google Scholar 

  45. S.M. Hamidi, A. Mosivand, M. Mahboubi, H. Arabi, N. Azad, M. Jamal, New generation of a-MnO2 nanowires@PDMS composite as hydrogen gas sensor. Appl. Phys. A 124, 253 (2018)

    Article  ADS  Google Scholar 

  46. Q. Zhang, J. Xu, Y. Liu, H.Y. Chen, In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems. Lab Chip 8, 352 (2008)

    Article  Google Scholar 

  47. S. Hamidi, R. Ramezani, A. Bananej, Hydrogen gas sensor based on long-range surface plasmons in lossy palladium film placed on photonic crystal stack. Opt. Mater. 53, 201–208 (2016). https://doi.org/10.1016/j.optmat.2016.01.050

    Article  ADS  Google Scholar 

  48. F. Sohrabi, S.M. Hamidi, Optical detection of brain activity using plasmonic ellipsometry technique. Sens. Actuators B 251, 153–163 (2017). https://doi.org/10.1016/j.snb.2017.05.037

    Article  Google Scholar 

  49. A. Samadi, H. Klingberg, L. Jauffred, A. Kjær, P. Martin, Bendix, L.B. Oddershede, Platinum nanoparticles: a non-toxic, effective and thermally stable alternative plasmonic material for cancer therapy and bioengineering. Nanoscale (2018). https://doi.org/10.1039/C8NR02275E

    Article  Google Scholar 

  50. G. Baffou, R. Quidant, Thermoplamonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 7(2), 171 (2013)

    Article  ADS  Google Scholar 

  51. L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West, Proc. Natt. Acad. Sci. USA 100(23), 13549 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Hamidi.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatea, M.A., Jawad, H.A. & Hamidi, S.M. Detecting the thermoplasmonic effect using ellipsometry parameters for self-assembled gold nanoparticles within a polydimethylsiloxane matrix. Appl. Phys. A 125, 103 (2019). https://doi.org/10.1007/s00339-019-2401-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2401-7

Navigation