Skip to main content
Log in

Effects of annealing on the thermoelectric properties of nanocrystalline Bi1.2Sb0.8Te3 thin films prepared by thermal evaporation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanocrystalline films of thermoelectric compound Bi1.2Sb0.8Te3 were deposited on the glass substrates at room temperature, under a vacuum of ~ 2 × 10− 5 mbar by thermal evaporation. These films were annealed in vacuum of 2 × 10− 5 mbar at 120 °C, 150 °C and 180 °C. The analysis of XRD profile revealed that as-deposited film was made up of very fine crystallites of size of ~ 14 nm. Raman spectra of as-deposited, 150 °C and 180 °C annealed films were analyzed to study the changes in the atomic bonding which indicated a variation of microstructure. This fact was supported by the emergence of diffraction lines corresponding to (110) and (00l) direction in XRD profile of the film annealed at 180 °C. FESEM analysis of the As-deposited and annealed films was conducted. It was found that the film formed consisted of nanosized clusters(lumps) along with pores between them. Magnified view depicted that each cluster was made up smaller crystallites that were packed together in a non-uniform fashion. The results obtained from XRD and FESEM prove that the films were nanocrystalline. Lattice parameters (c and a) were determined and overall c/a ratio was found to increase with annealing that indicated increase unit cell volume. This complied well with reduced defects, resulting strains and also indicated the change of crystal orientations in the film. Increase in the value of seebeck coefficient, by a factor of 6, was observed for film annealed at 180 °C (BST-180). This resulted in the 19 times increase in power factor of BST-180 as compared to as-deposited film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Gyaner, K.K. Kar, Prog. Mater. Sci. 83, 330 (2016)

    Article  Google Scholar 

  2. J.-C. Zheng, Front. Phys. China 3(3), 269 (2008)

    Article  ADS  Google Scholar 

  3. Z. Lu, H. Zhang, C. Mao, C.M. Li, Appl. Energ. 164, 57 (2016)

    Article  Google Scholar 

  4. V. Leonov, T. Torfs, P. Fiorini, C.V. Hoof, IEEE Sens. J. 7(5), 650 (2007)

    Article  ADS  Google Scholar 

  5. R. Chein, G. Huang, Appl. Therm. Eng. 24, 2207 (2004)

    Article  Google Scholar 

  6. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, Science 320, 634 (2008)

    Article  ADS  Google Scholar 

  7. O. Yamashita, S. Tomiyoshi, K. Makita, J. Appl. Phys. 93, 368 (2003)

    Article  ADS  Google Scholar 

  8. X. Tang, W. Xie, H. Li, W. Zhao, Q. Zhang, M. Nino, Appl. Phys. Lett. 90, 012101–012102 (2007)

    Article  ADS  Google Scholar 

  9. W. Xie, J. He, H.J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J.R.D. Copley, C.M. Brown, Q. Zhang, T.M. Tritt, Nano Lett. 10, 3283 (2010)

    Article  ADS  Google Scholar 

  10. X.B. Zhao, X.H. Ji, Y.H. Zhang, G.S. Cao, J.P. Tu, Appl. Phys. A 80, 1567 (2005)

    Article  ADS  Google Scholar 

  11. H.T. Zhang, X.G. Luo, C.H. Wang, Y.M. Xiong, S.Y. Li, X.H. Chen, J. Cryst. Growth 265, 558 (2004)

    Article  ADS  Google Scholar 

  12. M. Takashiri, S. Tanaka, K. Miyazaki, H. Tsukamoto, J. Alloy. Compd. 490, L44 (2010)

    Article  Google Scholar 

  13. R. Vankatasubramaniun, E. Sivola, T. Colpitts, B. O’Quinn, Nature 413, 597 (2001)

    Article  ADS  Google Scholar 

  14. R. Sathyamorrthy, J. Dheepa, J. Phys. Chem. Solids 68, 111 (2007)

    Article  ADS  Google Scholar 

  15. E.I. Rogacheva, A.V. Budnik, M.V. Dobrotvorskaya, A.G. Fedrov, S.I. Krivongov, P.V. Mateychenko, O.N. Nashchekina, A.Y. Sipatov, Thin Solid Films 612, 128 (2016)

    Article  ADS  Google Scholar 

  16. M. Takashiri, M. Takiishi, S. Tanaka, K. Miyazaki, H. Ksukamoto, J. Appl. Phys. 101, 074301–074301 (2007)

    Article  ADS  Google Scholar 

  17. C. Sudarshan, S. Jayakumar, K. Vaideki, C. Sudakar, Thin Solid Films 629, 28 (2017)

    Article  ADS  Google Scholar 

  18. H. Zou, D.M. Rowe, G. Min, J. Cryst. Growth 222, 82 (2001)

    Article  ADS  Google Scholar 

  19. P.H. Le, C.-N. Liao, C.W. Luo, J. Leu, J. Alloy. Compd. 615, 546 (2014)

    Article  Google Scholar 

  20. S. Golia, M. Arora, R.K. Sharma, A.C. Rastogi, Curr. Appl. Phys. 3, 195 (2003)

    Article  Google Scholar 

  21. Z. Xu, H. Wu, T. Zhu, C. Fu, X. Liu, L. Hu, J. He, J. He, X. Zhao, NPG Asia Mater. 8, 1 (2016)

    Google Scholar 

  22. M. Takashiri, S. Tanaka, K. Miyazaki, Thin Solid Films 519, 619 (2010)

    Article  ADS  Google Scholar 

  23. S. Morikawa, Y. Satake, M. Takashiri, Vacuum 148, 296 (2018)

    Article  ADS  Google Scholar 

  24. D.-H. Kim, E. Byon, G.-H. Lee, S. Cho, Thin Solid Films 510, 148 (2006)

    Article  ADS  Google Scholar 

  25. Y. Hosokawa, K. Wada, M. Tanaka, K. Tomita, M. Takashiri, Jpn. J. Appl. Phys. 57, 02CC02–01 (2018)

    Article  Google Scholar 

  26. M. Takashiri, S. Tanaka, H. Hagino, K. Miyazaki, Int. J. Heat Mass Tran. 76, 376 (2014)

    Article  Google Scholar 

  27. S. Cho, Y. Kim, A. DiVenere, G.K. Wong, J.B. Ketterson, Appl. Phys. Lett. 75, 1401 (1999)

    Article  ADS  Google Scholar 

  28. Y. Liu, M. Zhou, J. He, Scripta Mater. 111, 39 (2016)

    Article  Google Scholar 

  29. M. Takashiri, K. Miyazaki, S. Tanaka, J. Kurosaki, D. Nagai, H. Tsukamoto, J. Appl. Phys. 104, 084301–084302 (2008)

    Article  ADS  Google Scholar 

  30. W. Zhu, Y. Deng, Y. Wang, B. Luo, L. Cao, Thin Solid Films 556, 270 (2014)

    Article  ADS  Google Scholar 

  31. B.E. Warren, X-ray Diffraction (Addison-Wesley Publishing Co, London, 1969), p. 18

    Google Scholar 

  32. K.L. Chopra, Thin Film Phenomenon (McGraw-Hill, New York, 1969), p. 270

    Google Scholar 

  33. S.O. Kasap, Principles of Electronic Materials and Devices, 3 ed (Tata McGraw-Hill, New Delhi, 2007), p. 68

    Google Scholar 

  34. Y. Zhao, X. Luo, J. Zhang, J. Wu, X. Bai, M. Wang, J. Jia, H. Peng, Z. Liu, S.Y. Quek, Q. Xiong, Phys. Rev. B 90, 245428 (2014)

    Article  ADS  Google Scholar 

  35. K.M.F. Shahil, M.Z. Hossain, V. Goyal, A.A. Balandin, J. Appl. Phys. 111, 054305 (2012)

    Article  ADS  Google Scholar 

  36. Y. Liang, W. Wang, B. Zheng, G. Zhang, J. Huang, J. Li, T. Li, Y. Song, X. Zhang, J. Alloy. Compd. 509, 5147 (2011)

    Article  Google Scholar 

  37. C. Wang, X. Zhu, L. Nilsson, J. Wen, G. Wang, X. Shan, Q. Zhang, S. Zhang, J. Jia, Q. Xue, Nano Res. 6(9), 688 (2013)

    Article  Google Scholar 

  38. Z. Yu, X. Wang, Y. Du, S. Aminorroaya-Yamini, C. Zhang, K. Chuang, S. Li, J. Cryst. Growth 362, 247 (2013)

    Article  ADS  Google Scholar 

  39. X. Qi, W. Ma, X. Zhang, C. Zhang, Appl. Surf. Sci. 457, 41 (2018)

    Article  ADS  Google Scholar 

  40. M. Sabarinathan, M. Omprakash, S. Harish, M. Navaneethan, J. Archana, S. Ponnusamy, H. Ikeda, T. Takeuchi, C. Muthamizhchelvan, Y. Hayakawa, Appl. Surf. Sci. 418, 246 (2017)

    Article  ADS  Google Scholar 

  41. Y. Du, G. Qiu, Y. Wang, M. Si, X. Xu, W. Wu, P.D. Ye, Nano Lett. 17, 3965 (2017)

    Article  ADS  Google Scholar 

  42. A.S. Pine, G. Dresselhaus, Phys. Rev. B 4(2), 356 (1971)

    Article  ADS  Google Scholar 

  43. M. Kashiwagi, S. Hirata, K. Harada, Y. Zheng, K. Miyazaki, M. Yahiro, C. Adachi, Appl. Phys. Lett. 98, 023114 (2011)

    Article  ADS  Google Scholar 

  44. Z. Zhang, Y. Wang, Y. Deng, Y. Xu, Solid State Commun. 151, 1520 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by DST-PURSE, New Delhi grant. Authors are thankful to Dr Vasant Sathe, UGC-DAE Consortium, Indore, India for doing the Raman measurements on these samples. Sukhdeep Singh is thankful to Department of Science and Technology (DST) for providing PURSE grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Singh, J., Kaushal, J. et al. Effects of annealing on the thermoelectric properties of nanocrystalline Bi1.2Sb0.8Te3 thin films prepared by thermal evaporation. Appl. Phys. A 125, 144 (2019). https://doi.org/10.1007/s00339-019-2420-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2420-4

Navigation