Skip to main content
Log in

RETRACTED ARTICLE: Effect of target to substrate distance on the material properties of the Y2SiO5:Ce3+ thin film by pulsed laser deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

This article was retracted on 23 August 2021

This article has been updated

Abstract

The effect of the target–substrate distance on the structural, morphological and photoluminescence (PL) properties of the thin film of the Y2SiO5:Ce3+ commercial phosphor studied by the pulsed laser deposition method. The distance between the target and the substrate was in the order of 4.0–6.0 cm with a variation of 0.5. X-ray powder diffraction analysis (XRD) shows that the average crystal size is about 37 nm. As the substrate distance is increased, a substantial reduction in film thickness observed from the measurement of mass before and after deposition. This attributes to the semicircular diffusion of the plasma plume due to the reduction of particle species flow over the deposition area of the substrate. The main PL emission peak was observed at 438 nm, which is attributed to the 5d → 4f transition in Ce3+ orbitals. The 5d orbital is the first excited state in Ce3+ ion energy levels with two close states of 2D3/2 and 2D5/2. The splitting of 5d into suborbital 2D3/2 and 2D5/2 is due to the electron transition between orbitals of the trivalent cerium ion and the host material. This is studied using three excitation wavelengths (276, 303 and 356 nm) in which all their corresponding emission is in the same region peaked at 438 nm. The highest emission occurs with an excitation wavelength of 356 nm for all substrate distances. The CIE gives the blue emission band for the emission wavelength of 438 nm. The maximum ultraviolet–visible spectrum absorbance was observed at around 356 nm. The scanning electron microscope images show that the sizes and the morphology change as the substrate distance changes. The energy-dispersive X-ray spectrometer shows the presence of all the elements of the compound matrix (Y, Si, O and Ce).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. P. Taunk, R. Das, D. Bisen, R. Tamrakar, N. Rathor, Karbala Int. J. Mod. Sci. 1, 159–165 (2015)

    Article  Google Scholar 

  2. M. Leskelä, M. Ritala, J. Solid State Chem. 171, 170–174 (2003)

    Article  ADS  Google Scholar 

  3. A. Kitai, X. Ouyang, R. Siegele, Thin Solid Films 254, 268–272 (1995)

    Article  Google Scholar 

  4. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994), pp. 91–107

    Book  Google Scholar 

  5. B.D. Cullity, S.R. Stock, Pearson New International Edition. 3rd edn. (Pearson Education Limited, New York, 2014)

    Google Scholar 

  6. S.C. Singh, Z. Haibo, Sci. Adv. Mater. 4, 368–390 (2012)

    Article  Google Scholar 

  7. R. Eason (ed.), Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (Wiley-Interscience–Wiley, Hoboken, NJ, 2007)

    Google Scholar 

  8. J. Wang, S. Tian, G. Li, F. Liao, X. Jing, J. Electrochem. Soc. 148, H61–H66 (2001)

    Article  Google Scholar 

  9. C.R. Ronda, Luminescent Materials: From Theory to Applications (Wiley-VCH, New York, 2007)

    Book  Google Scholar 

  10. D. Cooke, J.-K. Lee, B. Bennett, J. Groves, L. Jacobsohn, E. McKigney, et al. Appl. Phys. Lett. 88, 103108 (2006)

    Article  ADS  Google Scholar 

  11. H. Huang, B. Yan, Solid State Commun. 132, 773–777 (2004)

    Article  ADS  Google Scholar 

  12. T.B. Öttger, C. Thiel, R. Cone, Y. Sun, Phys. Rev. B 79, 115104 (2009)

    Article  ADS  Google Scholar 

  13. B. Comaskey, G. Albrecht, R. Beach, B. Moran, R. Solarz, Opt. Lett. 18, 2029–2031 (1993)

    Article  ADS  Google Scholar 

  14. B. Lauritzen, J. Minář, H. De Riedmatten, M. Afzelius, N. Sangouard, C. Simon et al., Phys. Rev. Lett. 104, 080502 (2010)

    Article  ADS  Google Scholar 

  15. Z. Cole, T. Böttger, R.K. Mohan, R. Reibel, W. Babbitt, R. Cone et al., Appl. Phys. Lett. 81, 3525–3527 (2002)

    Article  ADS  Google Scholar 

  16. Y. Ogura, M. Kondo, T. Morimoto, A. Notomi, T. Sekigawa, Mater. Trans. 42, 1124–1130 (2001)

    Article  Google Scholar 

  17. H.M. O’Bryan, P.K. Gallagher, G. Berkstresser, J. Am. Ceram. Soc. 71, C-42–C-43 (1988)

    Article  Google Scholar 

  18. M. Aparicio, A. Duran, J. Am. Ceram. Soc. 83, 1351–1355 (2000)

    Article  Google Scholar 

  19. T. Minami, T. Miyata, S. Takata, I. Fukuda, Jpn. J. Appl. Phys. 30, L117 (1991)

    Article  ADS  Google Scholar 

  20. J. Dolo, O. Ntwaeaborwa, J. Terblans, E. Coetsee, B. Dejene, M.-M. Biggs, et al., Appl. Phys. A: Solids Surf. 101, 655–659 (2010)

    Article  ADS  Google Scholar 

  21. F. Dejene, M. Kebede, M. Redi-Abshiro, B. Kgarebe, Opt. Mater. 35, 1927–1931 (2013)

    Article  ADS  Google Scholar 

  22. J. Felsche, Rare Earths (Springer, New York, 1973), pp. 99–197

    Book  Google Scholar 

  23. K. Liddell, D. Thompson, Trans. J. Br. Ceram. Soc. 85, 17–22 (1986)

    Google Scholar 

  24. A.G. De Mesquita, A. Bril, Mater. Res. Bull. 4, 643–650 (1969)

    Article  Google Scholar 

  25. M. Leskelä, J. Suikkanen, J. Less-Common Met. 112, 71–74 (1985)

    Article  Google Scholar 

  26. G.J. Shmulovich, C. Brandle Berkstresser, A. Valentino, J. Electrochem. Soc. 135, 3141–3151 (1988)

    Article  ADS  Google Scholar 

  27. A. Meijerink, W. Schipper, G. Blasse, J. Phys. D: Appl. Phys. 24, 997 (1991)

    Article  ADS  Google Scholar 

  28. A. Mostako, A. Khare, Appl. Nanosci. 2, 189–193 (2012)

    Article  ADS  Google Scholar 

  29. D. Nečas, P. Klapetek, Gwyddion: an open-source software for SPM data analysis. Open Phys. 10, 181–188 (2012)

    Article  ADS  Google Scholar 

  30. L. Muresan, Y. Karabulut, A. Cadis, I. Perhaita, A. Canimoglu, J.G. Guinea et al., J. Alloy. Compd. 658, 356–366 (2016)

    Article  Google Scholar 

  31. A. Kuznetsov, J. Appl. Spectrosc. 20, 622–625 (1974)

    Article  ADS  Google Scholar 

  32. D. Bimberg, D. Robbins, D. Wight, J. Jeser, Appl. Phys. Lett. 27, 67–68 (1975)

    Article  ADS  Google Scholar 

  33. X. Sun, H.S. Kwok, Appl. Phys. A: Mater. Sci. Process. 69, S39–S43 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. Haile.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haile, H.T., Dejene, F.B. RETRACTED ARTICLE: Effect of target to substrate distance on the material properties of the Y2SiO5:Ce3+ thin film by pulsed laser deposition. Appl. Phys. A 125, 172 (2019). https://doi.org/10.1007/s00339-019-2473-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2473-4

Navigation