Skip to main content
Log in

Studying of SiO2/capron nanocomposite as a gate dielectric film for improved threshold voltage

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, SiO2 gate dielectric operation was improved using SiO2/capron nanocomposite. SiO2/capron nanocomposite was synthesized by the sol–gel method. The existence of two phases in the nanocomposite structure was revealed using energy dispersive spectroscopy. The formation of hydrogen bonds among SiO2 nanofillers and capron matrix was proved by Fourier transform infrared spectroscopy and thermogravimetric analysis. The fact resulted in the uniform dispersion of SiO2 nanoparticles within capron matrix and the formation of cross-linked network. Pure SiO2, pure capron, SiO2/capron nanocomposite dissolved in benzene alcohol and SiO2/capron nanocomposite dissolved in acid formic as the gate dielectric films were deposited on the p-type Si substrates. Atomic force microscopy showed a significant decrease in the average surface roughness of nanocomposite film (0.02 nm) compared to that of pure SiO2 and pure capron films (18.3 and 7.85 nm, respectively). The operation of deposited films as the gate dielectrics was compared by the current–voltage (IV) measurements in the metal–insulator–semiconductor structure. Fabricated p-type Si field-effect-transistors demonstrated a great decrease in the leakage currents and the threshold voltages by decreasing the surface roughness of their dielectric films, because the charge transport is strongly associated with trap depth and carrier scattering effects in the semiconductor/dielectric interface. As a result, the threshold voltages were shifted toward downward and reached 1 V for transistor based on SiO2/capron nanocomposite dielectric film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.K. Srivastava, C.K. Nahar, W.P. Sarkar, Y. Sing, Malhotra, Microelectron. Reliab. 51, 751 (2011)

    Google Scholar 

  2. A. Hashemi, S. Bahari, Ghasemi, Appl. Surf. Sci 416, 234 (2017)

    ADS  Google Scholar 

  3. M. Bahari, Shahbazi, J. Electron. Mater. 45, 1201 (2015)

    ADS  Google Scholar 

  4. A. Hashemi, S. Bahari, Ghasemi, J. Mater. Sci. 28, 13313 (2017)

    Google Scholar 

  5. H.-W. Lu, J.-G. Hwu, Appl. Phys. A 115, 837 (2014)

    ADS  Google Scholar 

  6. T. Riberio, C. Baleizao, J. Paulo, S. Farinha, Materials 7, 3881 (2014)

    ADS  Google Scholar 

  7. A.Z. Kattamis, R.J. Holmes, I.C. Cheng, K. Long, J.C. Sturm, S.R. Forrest, S. Wanger, IEEE Electron Dev. Lett. 27, 49 (2006)

    ADS  Google Scholar 

  8. M. Shahbazi, A. Bahari, S. Ghasemi, Synth. Met. 221, 332 (2016)

    Google Scholar 

  9. A. Hashemi, A. Bahari, Curr. Appl. Phys. 18, 1546 (2018)

    ADS  Google Scholar 

  10. A.J. Bera, Pal, J. Phys. Chem. C 120, 19011 (2016)

    Google Scholar 

  11. S.K. Saha, A. Bera, A.J. Pal, ACS Appl. Mater. Interfaces 7, 886 (2015)

    Google Scholar 

  12. T. Deyu, M. Liu, H. Sansiri, W. Wei, IEEE 2, 40 (2007)

    Google Scholar 

  13. A. Bahari, M. Roeinfard, A. Ramzannezhad, J. Mater. Sci. 27, 9363 (2016)

    Google Scholar 

  14. L. Zhen, W. Guan, L. Shang, M. Liu, G. Liu, J. Phys. D Appl. Phys 41, 1216 (2008)

    Google Scholar 

  15. L.Q. Khor, K.Y. Cheong, J. Mater. Sci. 24, 2646 (2013)

    Google Scholar 

  16. J. Li, W. Shi, L. Shu, J. Yu, J. Mater. Sci. 26, 8601 (2015)

    Google Scholar 

  17. A. Hashemi, A. Bahari, Appl. Phys. A. 123, 535 (2017)

    ADS  Google Scholar 

  18. B. Soltani, M. Babaeipour, A. Bahari, J. Mater. Sci. 28, 4378 (2017)

    Google Scholar 

  19. M. Bahari, B. Babaeipour, Soltani, J. Mater. Sci. 27, 2131 (2016)

    Google Scholar 

  20. A. Hashemi, S. Bahari, Ghasemi, J. Electron. Mater. 47, 3717 (2018)

    ADS  Google Scholar 

  21. G. Rusu, E. Rusu, High Perform. Polym. 18, 355 (2006)

    Google Scholar 

  22. C.-S. Wu, Des. Monom. Polym. 4, 311 (2007)

    Google Scholar 

  23. Q. Xu, X. Li, F. Chen, Z. Zhang, J. Braz. Chem. Soc 25, 1218 (2014)

    Google Scholar 

  24. S. Pandis, M. Trujillo, J.L.G. Roganowicz, Ribelles, Macromol. Symp. 341, 34 (2014)

    Google Scholar 

  25. L. Kabner, K. Nagel, R.-E. Grutzner, M. Korb, T. Ruffer, H. Lang, S. Spange, Polym. Chem 6, 6297 (2015)

    Google Scholar 

  26. E.P. Bonilla, S. Trujillo, B. Demirdogen, J.E. Perilla, Y.M. Elcin, J.L.G. Ribelles, Mater. Sci. Eng. C 40, 418 (2014)

    Google Scholar 

  27. M. Shahbazi, A. Bahari, S. Ghasemi, Organ. Electron. 32, 100 (2016)

    Google Scholar 

  28. A. Bahari, R. Gholipur, J. Mater. Sci. 24, 674 (2013)

    Google Scholar 

  29. K. Czarnobaj, Drug Deliv. 15, 485 (2008)

    Google Scholar 

  30. R. Essien, O.A. Olaniyi, L.A. Adams, R.O. Shaibu, J. Miner. Mater 11, 976 (2012)

    Google Scholar 

  31. T.M.A. Ellateif, S. Maitra, Int. J. Nano Dimens. 8, 97 (2017)

    Google Scholar 

  32. M.D. Moraled-Acosta, C.G. Alvarado-Beitra, M.A. Quevedo-Lopez, B.E. Gnade, J. Non-Cryst. Solids 326, 124 (2013)

    ADS  Google Scholar 

  33. L.C. Bandeira, K.J. Ciuffi, P.S. Calefi, E.J. Nassar, J.V.l. Silva, M. Oliveria, I.A. Maia, I.M. Salvado, M.H.V. Fernandes, J. Braz. Chem. Soc 23, 810 (2012)

    Google Scholar 

  34. Q. Wu, X. Liu, L.A. Berglund, Polymer 43, 2445 (2002)

    Google Scholar 

  35. S.J. Cooper, M. Coogan, N. Everall, I. Priestnall, Polymer 42, 10119 (2001)

    Google Scholar 

  36. E. Kherroub, M. Belbachir, S. Lamouri, L. Bouhadar, K. Chikh, Orient. J. Chem. 29, 1429 (2013)

    Google Scholar 

  37. G.-X. Chen, H.-S. Kim, B.H. Park, J.-S. Yoon, Polymer 47, 4760 (2006)

    Google Scholar 

  38. M. Wei, W. Davis, B. Urban, Y. Song, F. Porbeni, X. Wang, J.L. White, C.M. Balik, C.C. Rusa, J. Fox. A. E. Tonell Macromol. 35, 8039 (2002)

    Google Scholar 

  39. Z. Xu, C. Gao, Macromolecules 43, 6716 (2010)

    ADS  Google Scholar 

  40. L. Huang, E. Allen, A.E. Tonelli, Polymer 40, 3211 (1999)

    Google Scholar 

  41. A. Oleinikova, I. Brovchenko, Phys. Chem. Lett. 2, 765 (2011)

    Google Scholar 

  42. T. Xc, P. My, T. Ls, NCBI, 19, 484 (2002)

  43. B.-R. Wu, T.H. Tasai, D.-S. Wuu, Appl. Surf. Sci. 354, 216 (2015)

    ADS  Google Scholar 

  44. A. Srivastava, O. Mangla, R.K. Nahar, V. Gupta, C.K. Sarkar, J. Mater. Sci. 25, 3257 (2014)

    Google Scholar 

  45. D. Bharti, S.P. Tiwari, Synth. Mett. 215, 1 (2016)

    Google Scholar 

  46. T.T. Dao, H. Murata, IEICE Trans. Electron E98-C, 422 (2015)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Bahari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahari, A., Ghovati, M. & Hashemi, A. Studying of SiO2/capron nanocomposite as a gate dielectric film for improved threshold voltage. Appl. Phys. A 125, 257 (2019). https://doi.org/10.1007/s00339-019-2547-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2547-3

Navigation