Skip to main content
Log in

Different methods for removing boron-rich layer and their impacts on the efficiency of interdigitated back contact solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, three commonly used methods for boron-rich layer (BRL) (BRL: abbreviation of boron-rich layer, a layer constituted by compound of boron and silicon.) removal and their impacts on the surface passivation and the efficiency of the final interdigitated back contact solar cells are investigated. The method of in-situ oxidation can remove BRL completely, but will cause serious degradation of the bulk lifetime. The method of treatment in boil nitric acid cannot remove BRL completely resulting in a poor passivation quality of the substrate surface. The method of chemical etch treatment (CET) (CET: Abbreviation of chemical etch treatment.) can remove BRL completely and would not cause any degradation of the bulk lifetime. Finally, interdigitated back contact solar cells have been fabricated using the three methods mentioned above for BRL removal and the highest efficiency of 21.17% is achieved with the BRL removed by the method of CET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. TNBA: Abbreviation of treat in boiling nitric acid.

References

  1. D. Macdonald, L.J. Geerligs, Appl. Phys. Lett. 85, 4061 (2004)

    Article  ADS  Google Scholar 

  2. J. Zhao, A. Wang, P.P. Altermatt, M.A. Green, J.P. Rakotoniaina, O. Breitenstein, Proc. 29th IEEE. PVSC. 5, 218 (2002)

    Google Scholar 

  3. J. Knobloch, A. Noel, E. Schaeffer, U. Schubert, F.J. Kamerewerd, S. Klussmann, W. Wettling, Proc. 23th IEEE. PVSC. 23, 271 (1993)

    Google Scholar 

  4. M. Taguchi, A. Yano, S. Tohoda, IEEE J. Photovolt 4, 96 (2014)

    Article  Google Scholar 

  5. P. Procel, A. Ingenito, R.D. Rose, Prog. Photovolt. 25, 452 (2017)

    Article  Google Scholar 

  6. M.A. Kessler, T. Ohrdes, B. Wolpensinger, N.P. Harder, Semicond. Sci. Technol. 25, 9 (2010)

    Article  Google Scholar 

  7. A. Das, K. Ryu, A. Rohatgi, IEEE J. Photovolt. 1, 146 (2011)

    Article  Google Scholar 

  8. N. Wehmeier, G. Schraps, H. Wagner, B. Lim, N.P. Harder, P.P. Altermatt, Proc. 28th EU. PVSEC. 28, 1980 (2011)

    Google Scholar 

  9. S.P. Phang, W. Liang, B. Wolpensinger, M.A. Kessler, D. Macdonald, IEEE J. Photovolt. 3, 261 (2013)

    Article  Google Scholar 

  10. E. Arai, H. Nakamura, Y. Terunuma, J. Electrochem. Soc. 120, 980 (1973)

    Article  Google Scholar 

  11. C. Kim, S. Park, Y.D. Kim, H. Park, S. Kim, H. Kim, H. Lee, D. Kim, Thin. Solid. Film. 564, 253 (2014)

    Article  ADS  Google Scholar 

  12. B. Singha, C.S. Solanki, Mat. Sci. Semicon. Proc. 57, 83 (2017)

    Article  Google Scholar 

  13. K. I.Kurachi, Yoshioka, Jpn. J. Appl. Phys. 53, 036501–036504 (2014)

    Article  ADS  Google Scholar 

  14. B. Singha, C.S. Solanki, Semicond. Sci. Technol. 31, 0355001–0355009 (2016)

    Article  Google Scholar 

  15. S.Z. Yang, J.L. Li, H.B. Yang, X.J. Li, C. Ye, X. Liu, Yuan, J. Mater. Sci-Mater. El. 29, 20081 (2018)

    Article  Google Scholar 

  16. S. Meier, S. Lohmüller, S. Mack, A. Wolf, S. W. Glunz, AIP Conf. Proc. 1999, 070003 (2018)

    Article  Google Scholar 

  17. C.J. J.Ryu, A. Choi, Y.W. Rohatgi, Ok, Curr. Appl. Phys. 16, 497 (2016)

    Article  ADS  Google Scholar 

  18. K. Ryu, A. Upadhyaya, H.J. Song, C.J. Choi, A. Rohatgi, Y.W. Ok, Appl. Phys. Lett. 101, 073902 (2012)

    Article  ADS  Google Scholar 

  19. C.J. L.Ryu, H. Choi, D. Park, A. Kim, Y.W. Rohatgi, Ok, Sol. Energ. Mat. Sol. C. 146, 58 (2016)

    Article  Google Scholar 

  20. B. Singhaa, C.S. Solankib, Energy. Proc. 57, 117 (2014)

    Article  Google Scholar 

  21. P. Negrini, A. Ravaglia, S. Solmi, J. Electrochem. Soc. 125, 609 (1978)

    Article  Google Scholar 

  22. Z.Y. Yu, S. Jiang, X.W. Dai, K. Tao, C. Zhang, S.W. Duo, R. Jia, Adv. Eng. Res. 148, 357 (2017)

    Google Scholar 

  23. C.X. Hou, R. Jia, K. Tao, S. Jiang, P. fF., H.C. Zhang, S.J. Sun, M.Z. Liu, X.H. Peng, J. Semicond. 39, 122004–122011 (2018)

    Article  Google Scholar 

  24. D.E. Kane, R.M. Swanson, Proc. 18th IEEE. PVSC. 18, 578 (1985)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Project of Beijing Municipal Science and Technology Commission (Grant no. Z151100003515003) and National Natural Science Foundation of China (Grant no.110751402347).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Jia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Jia, R., Tao, K. et al. Different methods for removing boron-rich layer and their impacts on the efficiency of interdigitated back contact solar cells. Appl. Phys. A 125, 264 (2019). https://doi.org/10.1007/s00339-019-2563-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2563-3

Navigation