Skip to main content
Log in

Defects-induced nonlinear saturable absorption mechanism in europium-doped ZnO nanoparticles synthesized by facile hydrothermal method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, the effect of europium (Eu) dopant on the third-order nonlinear optical (NLO) responses of ZnO nanoparticles (NPs) is investigated. The NPs are synthesized by facile hydrothermal technique using saponin as a capping agent. The samples are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM), Energy-dispersive spectroscopy (EDS), UV–visible spectroscopy and Room-temperature photoluminescence spectroscopy (RTPL). The synthesized NPs exhibit wurtzite crystal structure with good crystallinity. Williamson–Hall analysis of XRD pattern revealed the presence of dopant induced compressive strain in the crystal lattice of Eu doped ZnO NPs. The capping of saponin on the surface of NPs is confirmed by FTIR study. A significant decrease in the optical band gap of Eu-doped ZnO NPs attributed to the presence of extended defect states below the conduction band. An enhancement in the blue luminescence is observed for the highest doping level (5 at. wt% of Eu), and this is attributed to defects-related emission in the NPs. The third-order NLO properties of the NPs are explored by a single beam Z-scan technique by employing continuous-wave laser of wavelength 532 nm. The open aperture Z-scan curves showed a remarkable switching from reverse saturable absorption to saturable absorption in 5 at. wt% Eu-doped ZnO NPs is caused due to the ground-state bleaching effect. Further, the closed aperture Z-scan curves exhibit the positive nonlinear refractive index in the 5 at. wt% Eu-doped ZnO NPs attributed to the thermo-optical effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Schmidt-Mende, J.L. MacManus-Driscoll, Mater. Today 10, 40 (2007)

    Article  Google Scholar 

  2. U.P. Shaik, P.A. Kumar, M.G. Krishna, S.V. Rao, Mater. Res. Express 1, 4 (2014)

    Article  Google Scholar 

  3. J.L. Ferrari, M.A. Schiavon, R. Landers, J.R. Sambrano, R.L. Siqueira, F.de A. La Porta, N.L. Marana, A.F.V. da Fonseca, J. Alloys Compd. 739, 939 (2017)

    Google Scholar 

  4. J.A. Mary, J.J. Vijaya, J.H. Dai, M. Bououdina, L.J. Kennedy, Y. Song, Mater. Sci. Semicond. Process. 34, 27 (2015)

    Article  Google Scholar 

  5. D.M. Li, X.B. Wang, F. Pan, K.W. Geng, C. Song, F. Zeng, Appl. Surf. Sci. 253, 1639 (2006)

    Article  ADS  Google Scholar 

  6. E. Fortunato, L. Raniero, L. Siva, A. Gonçalves, A. Pimentel, P. Barquinha, H. Águas, L. Pereira, G. Gonçalves, I. Ferreira, E. Elangovan, R. Martins, Sol. Energy Mater. Sol. Cells 92, 1605 (2008)

    Article  Google Scholar 

  7. R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Nano-Micro Lett. 7, 97 (2015)

    Article  Google Scholar 

  8. M. Sun, Z. Chen, X. Jiang, C. Feng, R. Zeng, J. Alloys Compd. 780, 540 (2019)

    Article  Google Scholar 

  9. M. Shkir, M. Taukeer, V. Ganesh, I.S. Yahia, B. Ul, A. Almohammedi, P. Shankaragouda, S.R. Maidur, S. Alfaify, Opt. Laser Technol. 108, 609 (2018)

    Article  ADS  Google Scholar 

  10. H. Ahmad, M.A.M. Salim, M.F. Ismail, S.W. Harun, Laser Phys. 26, 115107 (2016)

    Article  ADS  Google Scholar 

  11. K. Senthilkumar, B.E. Urban, O. Kumar, Y. Fujita, J. Lin, A. Neogi, Opt. Mater. Express 1, 658 (2011)

    Article  ADS  Google Scholar 

  12. C.A. Bader, F. Zeuner, M.H.W. Bader, T. Zentgraf, C. Meier, C.A. Bader, F. Zeuner, M.H.W. Bader, T. Zentgraf, C. Meier, J. Appl. Phys. 118, 213105 (2015)

    Article  ADS  Google Scholar 

  13. P.S. Halasyamani, K.R. Poeppelmeier, Chem. Mater. 10, 2753 (1998)

    Article  Google Scholar 

  14. M.C. Larciprete, D. Haertle, A. Belardini, M. Bertolotti, F. Sarto, P. Günter, Appl. Phys. B Lasers Opt. 82, 431 (2006)

    Article  ADS  Google Scholar 

  15. K. Wang, J. Zhou, L. Yuan, Y. Tao, J. Chen, P. Lu, Z.L. Wang, Nano Lett. 12, 833 (2012)

    Article  ADS  Google Scholar 

  16. K.M. Sandeep, S. Bhat, S.M. Dharmaprakash, P.S. Patil, K. Byrappa, J. Appl. Phys. 120, 123107 (2016)

  17. K.M. Sandeep, S. Bhat, S.M. Dharmaprakash, K. Byrappa, J. Phys. D Appl. Phys. 50, 095105 (2017)

  18. P. Sreekanth, V. Gandhiraj, R. Philip, G.M. Bhalerao, RSC Adv. 5, 80756 (2015)

    Article  Google Scholar 

  19. A. Singh, S. Kumar, R. Das, P.K. Sahoo, RSC Adv. 5, 88767 (2015)

    Article  Google Scholar 

  20. A.V. Khomenko, L. Castañeda, R. Rangel-Rojo, B.A. Can-Uc, C.I. García-Gil, C. Torres-Torres, R. Torres-Martínez, Opt. Express 21, 21357 (2013)

    Article  ADS  Google Scholar 

  21. L.I.V.P.N. Nampoori, P. Radhakrishnan, J. Mater. Res. 23, 2836 (2008)

    Article  ADS  Google Scholar 

  22. K.X. Zhang, C.B. Yao, X. Wen, Q.H. Li, W.J. Sun, RSC Adv. 8, 26133 (2018)

    Article  Google Scholar 

  23. B. Karthikeyan, C.S. Suchand Sandeep, T. Pandiyarajan, P. Venkatesan, R. Philip, Appl. Phys. A Mater. Sci. Process. 102, 115 (2011)

    Article  ADS  Google Scholar 

  24. I.V. Kityk, M. Abd-Lefdil, P. Poornesh, A. Rao, A. El Fakir, M. Sekkati, S. Pramodini, K. Spoorthi, G. Sanjeev, Laser Phys. 27, 065403 (2017)

    Article  ADS  Google Scholar 

  25. S.S. Syamchand, G. Sony, J. Lumin. 165, 190 (2015)

    Article  Google Scholar 

  26. V. Kumar, V. Kumar, S. Som, M.M. Duvenhage, O.M. Ntwaeaborwa, H.C. Swart, Appl. Surf. Sci. 308, 419 (2014)

    Article  ADS  Google Scholar 

  27. Y. Liu, W. Luo, R. Li, G. Liu, M.R. Antonio, X. Chen, J. Phys. Chem. C 112, 686 (2008)

    Article  Google Scholar 

  28. A. Kolodziejczak-Radzimska, T. Jesionowski, Materials. 7, 2833 (2014)

    Article  ADS  Google Scholar 

  29. V. Jassal, U. Shanker, B.S. Kaith, S. Shankar, RSC Adv. 5, 26141 (2015)

    Article  Google Scholar 

  30. S. Sundar, S. Piraman, RSC Adv. 5, 74408 (2015)

    Article  Google Scholar 

  31. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990)

    Article  ADS  Google Scholar 

  32. H. Li, S. Jiao, S. Gao, H. Li, L. Li, Cryst Eng Comm 16, 9069 (2014)

    Article  Google Scholar 

  33. A. Kalita, M.P.C. Kalita, Phys. E Low Dimens Syst. Nanostruct 92, 36 (2017)

    Article  ADS  Google Scholar 

  34. V. Gandhi, R. Ganesan, H.H. Abdulrahman Syedahamed, M. Thaiyan, J. Phys. Chem. C 118, 9715 (2014)

    Article  Google Scholar 

  35. M. Baira, A. Bekhti-siad, K. Hebali, H. Bouhani-benziane, M. Sahnoun, Phys. B Phys. Condens. Matter 537, 296 (2018)

    Article  ADS  Google Scholar 

  36. P.P. Pal, J. Manam, J. Rare Earths 31, 37 (2013)

    Article  Google Scholar 

  37. V. Reddy, R.S. Torati, S. Oh, C. Kim, Ind. Eng. Chem. Res. 52, 556 (2012)

    Article  Google Scholar 

  38. R.A. Sperling, W.J. Parak, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 1333 (2010)

    Article  ADS  Google Scholar 

  39. P. Chandrasekaran, G. Viruthagiri, N. Srinivasan, J. Alloys Compd. 540, 89 (2012)

    Article  Google Scholar 

  40. B. Khodadadi, M. Bordbar, J. Sol-Gel. Sci. Technol. 77, 521 (2016)

    Article  Google Scholar 

  41. A. De Jamblinne De Meux, G. Pourtois, J. Genoe, P. Heremans, J. Phys. D. Appl. Phys. 48, 435104 (2015)

    Article  ADS  Google Scholar 

  42. F. Oba, Y. Kumagai, Appl. Phys. Express 11, 060101 (2018)

    Article  ADS  Google Scholar 

  43. M. Yilmaz, Mater. Sci. Semicond. Process. 40, 99 (2015)

    Article  Google Scholar 

  44. F. Yakuphanoglu, Y. Caglar, S. Ilican, M. Caglar, Phys. B Condens. Matter 394, 86 (2007)

    Article  ADS  Google Scholar 

  45. P.K. Samanta, P.R. Chaudhuri, J. Opt. 41, 75 (2012)

    Article  Google Scholar 

  46. V. Kumar, O.M. Ntwaeaborwa, T. Soga, V. Dutta, H.C. Swart, ACS Photonics. 4, 2613 (2017)

    Article  Google Scholar 

  47. J. Iqbal, B. Wang, X. Liu, D. Yu, B. He, R. Yu, New J. Phys. 11, 063009 (2009)

    Article  ADS  Google Scholar 

  48. S. Geburt, M. Lorke, A.L. Rosa, T. Frauenheim, R.R. Der, T. Voss, U. Kaiser, W. Heimbrodt, C. Ronning, Nano Lett. 14, 4523 (2014)

    Article  ADS  Google Scholar 

  49. L. Irimpan, V.P.N. Nampoori, P. Radhakrishnan, Chem. Phys. Lett. 455, 265 (2008)

    Article  ADS  Google Scholar 

  50. E.W. Van Stryland, A.A. Said, D.J. Hagan, Prog. Cryst. Growth Charact. Mater. 27, 279 (1994)

    Article  Google Scholar 

  51. M. Ramya, T.K. Nideep, K.R. Vijesh, V.P.N. Nampoori, M. Kailasnath, Opt. Mater. 81, 30 (2018)

    Article  ADS  Google Scholar 

  52. E. Solati, D. Dorranian, Appl. Phys. B Lasers Opt. 122, 1 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Coordinator, DST-PURSE, Department of Physics, Mangalore University, for providing facilities for the characterization of samples and technical support to carry out the work. Vinoditha U acknowledges the financial assistance received from the DST-PURSE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Vinoditha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinoditha, U., Sarojini, B.K., Sandeep, K.M. et al. Defects-induced nonlinear saturable absorption mechanism in europium-doped ZnO nanoparticles synthesized by facile hydrothermal method. Appl. Phys. A 125, 436 (2019). https://doi.org/10.1007/s00339-019-2732-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2732-4

Navigation