Skip to main content
Log in

Engulfment and distribution of second-phase nanoparticle during dendrite solidification of an Al–Si binary alloy: a simulation study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To achieve optimum strengthening effects of external nanoparticles (NPs), uniform dispersion of NPs in the melt is necessary for the casting manufacturing of metal matrix nanocomposites in which dislocation-based strengthening mechanisms play a significant role. However, the engulfment of nanoparticles within the solidifying grains and the avoidance of pushing them outside the solidification front are always a major challenge. Therefore, the understanding of local interface velocity and interface/particle dynamics during alloy solidification is of significant importance. Existing numerical studies on particle engulfment/pushing do not take into consideration the anisotropy of crystal growth and assume planar solidification interface, and thus they are unable to obtain the nanoparticle distribution in realistic alloy solidification. In this research, we investigate the engulfment/push behavior and the overall distribution of SiO2 nanoparticles in the dendrite solidification of an Al–Si binary alloy. Phase-field method is used to simulate the dendrite growth and to predict local solidification front velocity. In combination with the critical engulfment velocity obtained from a non-steady-state particle/front interaction model, the engulfment/push behavior of the entire solidification domain as well as the final distribution of nanoparticles can be analyzed. It is found that the distribution pattern of NPs obtained from simulation is overall consistent with the limited experimental results in the literature. In addition, the two main dislocation-based strengthening effects, e.g., Orowan bowing and CTE (coefficient of thermal expansion) mismatch strengthening, brought by external nanoparticles are quantitatively predicted. The degree of undercooling (60, 80, and 100 K) and nanoparticle size (10, 20, 30, 40, and 50 nm) are varied to investigate their influence on the NP engulfment behavior and the resulted strengthening effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z. Zhang, D.L. Chen, Mater. Sci. Eng., A 483(148), 152 (2008)

    Google Scholar 

  2. R. Casati, M. Vedani, Metals 4(1), 65–83 (2014)

    Article  Google Scholar 

  3. A. Mazahery, H. Abdizadeh, H.R. Baharvandi, Mater. Sci. Eng., A 518(1), 61–64 (2009)

    Article  Google Scholar 

  4. L.Y. Chen, J.Y. Peng, J.Q. Xu, H. Choi, X.C. Li, Scripta Mater. 69(8), 634–637 (2013)

    Article  Google Scholar 

  5. J.B. Ferguson, B.F. Schultz, P.K. Rohatgi, C.S. Kim, In Light Metals 2014 (Springer, Cham, 2014), pp. 1383–1388

    Google Scholar 

  6. D.R. Uhlmann, B. Chalmers, K.A. Jackson, J. Appl. Phys. 35(10), 2986–2993 (1964)

    Article  ADS  Google Scholar 

  7. A.V. Catalina, S. Sen, D.M. Stefanescu, W.F. Kaukler, Metall. Mater. Trans. A 35(5), 1525–1538 (2004)

    Article  Google Scholar 

  8. I.B. Ozsoy, G. Li, H. Choi, H. Zhao, J. Cryst. Growth 422, 62–68 (2015)

    Article  ADS  Google Scholar 

  9. J.C. Kao, A.A. Golovin, S. H. Davis 625, 299–320 (2009)

    Google Scholar 

  10. M. Ode, J.S. Lee, S.G. Kim, W.T. Kim, T. Suzuki 40(2), 153–160 (2000)

    Google Scholar 

  11. Y. Yang, J.W. Garvin, H.S. Udaykumar, Int. J. Heat Mass Transf. 51(1–2), 155–168 (2008)

    Article  Google Scholar 

  12. J. Kundin, H. Aufgebauer, C. Reimann, J. Seebeck, J. Friedrich, T. Jauss, A. Croell, Metallurgical and Materials Transactions A 48(1), 342–353 (2017)

    Article  ADS  Google Scholar 

  13. A. Dehghan Hamedan, M. Shahmiri, J. Compos. Mater. 51(20), 2913–2932 (2017)

    Article  ADS  Google Scholar 

  14. L. Zheng, X. Ma, D. Hu, H. Zhang, T. Zhang, Y. Wan, J. Cryst. Growth 318(1), 313–317 (2011)

    Article  ADS  Google Scholar 

  15. J.W. Garvin, Y. Yang, H.S. Udaykumar, Int. J. Heat Mass Transf. 50(15–16), 2952–2968 (2007)

    Article  Google Scholar 

  16. M. Ode, T. Suzuki, S.G. Kim, W.T. Kim, Sci. Technol. Adv. Mater. 1, 1–43 (2000)

    Article  Google Scholar 

  17. K. Wang, H.Y. Jiang, Y.W. Jia, H. Zhou, Q.D. Wang, B. Ye, W.J. Ding, Acta Mater. 103, 252–263 (2016)

    Article  ADS  Google Scholar 

  18. L.Y. Chen, J.Q. Xu, H. Choi, H. Konishi, S. Jin, X.C. Li, Nature Communications 5, 3879 (2014)

    Article  ADS  Google Scholar 

  19. S. Qiang, Z. Yutuo, C. Haixia, W. Chengzhi, Research and development (2008). Accessed on Feb-28-2019: http://www.foundryworld.com/uploadfile/200922748522189.pdf

  20. S.G. Kim, W.T. Kim, T. Suzuki, Phys. Rev. E 58(3), 3316 (1998)

    Article  ADS  Google Scholar 

  21. T. Suzuki, M. Ode, S.G. Kim, W.T. Kim, J. Cryst. Growth 237, 125–131 (2002)

    Article  ADS  Google Scholar 

  22. J.L. Murray, A.J. McAlister, The Al–Si (aluminum–silicon) system. Bulletin of Alloy Phase Diagrams 5(1), 74 (1984)

    Article  Google Scholar 

  23. S. Mukherjee, D.M. Stefanescu, Metallurgical and Materials Transactions A 35(2), 613 (2004)

    Article  ADS  Google Scholar 

  24. J.Q. Xu, L.Y. Chen, H. Choi, X.C. Li, J. Phys.: Condens. Matter 24(25), 255–304 (2012)

    Google Scholar 

  25. P.C. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry, revised and expanded, vol. 14 (CRC Press, Boca Raton, 1997)

    Book  Google Scholar 

  26. H.D. Ackler, R.H. French, Y.M. Chiang, J. Colloid Interface Sci. 179(2), 460–469 (1996)

    Article  ADS  Google Scholar 

  27. R.F. Egerton, Electron energy-loss spectroscopy in the electron microscope (Springer, Berlin, 2011)

    Book  Google Scholar 

  28. X.J. Chen, A.C. Levi, E. Tosatti 251, 641–644 (1991)

    Google Scholar 

  29. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, Revised 2nd edn. (Wiley, New York, 2007)

    Google Scholar 

  30. D. Shangguan, S. Ahuja, D.M. Stefanescu, Metall. Trans. A 23(2), 669–680 (1992)

    Article  Google Scholar 

  31. D.Y. Chan, R.G. Horn, J Chem Phys 83(10), 5311–5324 (1985)

    Article  ADS  Google Scholar 

  32. J. Klein, E. Kumacheva, Science 269(5225), 816–819 (1995)

    Article  ADS  Google Scholar 

  33. H. Awaji, Y. Nishimura, S.M. Choi, Y. Takahashi, T. Goto, S. Hashimoto, J. Ceram. Soc. Jpn. 117(1365), 623–629 (2009)

    Article  Google Scholar 

  34. D. Jiang, C. Hong, M. Zhong, M. Alkhayat, A. Weisheit, A. Gasser, R. Poprawe, Surf. Coat. Technol. 249(125), 131 (2014)

    Google Scholar 

  35. N. Hansen, Acta Metall. 25(8), 863–869 (1977)

    Article  Google Scholar 

  36. G.E. Totten, D.S. MacKenzie, Handbook of Aluminum. Physical Metallurgy and Processes, vol. 1 (CRC Press, Boca Raton, 2003)

    Book  Google Scholar 

  37. A.C. Reddy, in National Conference on Advanced Materials and Manufacturing Techniques, March 08-09, 2004, Hyderabad, India (2004)

  38. Q. Zhang, G. Wu, L. Jiang, G. Chen, Mater. Chem. Phys. 82(3), 780–785 (2003)

    Article  Google Scholar 

  39. Z. Zhang, D.L. Chen, Scripta Mater. 54(7), 1321–1326 (2006)

    Article  Google Scholar 

  40. D. Hull, D.J. Bacon, Introduction to Dislocations, 4th edn. (Butterworth-Heinemann, Oxford, 2001)

    Google Scholar 

  41. L. Gong, B. Chen, L. Zhang, Y. Ma, K. Liu, J. Mater. Sci. Technol. 34(5), 811–820 (2018)

    Article  Google Scholar 

  42. K. Glasner, Physica D 151(2–4), 253–270 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  43. S. Chakraborty, P. Dutta, Int. J. Heat Mass Transf. 46(12), 2115–2134 (2003)

    Article  Google Scholar 

  44. D.M. Herlach, B. Feuerbacher, Adv. Space Res. 11(7), 255–262 (1991)

    Article  Google Scholar 

  45. M.A. Suarez, I. Figueroa, A. Cruz, A. Hernandez, J.F. Chavez, Materials Research 15(5), 763–769 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge that this work was supported in part by NSF Grant CMMI#1563002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Shi, J. Engulfment and distribution of second-phase nanoparticle during dendrite solidification of an Al–Si binary alloy: a simulation study. Appl. Phys. A 125, 449 (2019). https://doi.org/10.1007/s00339-019-2738-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2738-y

Navigation