Skip to main content
Log in

Effect of Cu doping on microstructure and thermal stability of Ge2Sb2Te5 thin film

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The microstructure and thermal stability of Cu-doping Ge2Sb2Te5 (GST) phase-change thin films are investigated. In this work, Cu-doping GST thin films are deposited on Si substrate using magnetron co-sputtering method. The experimental results show that there is no obviously phase segregation in Cu-doping GST thin films annealed at elevated temperature. Crystallization process of Cu-doping GST thin films annealed at 270 °C is nucleation-driven, and the phase transformation process from cubic structure to hexagonal structure is interface control process. Cu doping can promote the growth of {0001} oriented grains during the process of annealed at 370 °C, leading to sharp {0001} fiber texture, which is beneficial to improve the switching speed of the phase-change memory devices. With the increasing of Cu content, thickness variation during phase transformation of Cu-doping GST thin films decreases gradually, indicating that Cu doping contributes to enhance cycling endurance. Thermal stability of GST thin film is also improved by Cu doping, and the crystallization temperature of Cu13.7(GST)86.3 is 190 °C. The bond formation of Cu–Te is beneficial to obtain more stable amorphous phase, which contributes to enhance thermal stability of GST thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.H. Chen, K.X. Li, W.Y. Lin, K.H. Hsu, P.Y. Li, C.H. Yang, C.X. Xue, E.Y. Yang, Y.K. Chen, Y.S. Chang, T.H. Hsu, Y.C. King, C.J. Lin, R.S. Liu, C.C. Hsieh, K.T. Tang, M.F. Chang, IEEE International Solid-State Circuits Conference-(ISSCC), 494–496 (2018)

  2. W. Zhang, R. Mazzarello, M. Wuttig, E. Ma, Nat. Rev. Mater. 4, 150–168 (2019)

    ADS  Google Scholar 

  3. S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450–1453 (1968)

    ADS  Google Scholar 

  4. S. Raoux, W. Wełnic, D. Ielmini, Chem. Rev. 110, 240–267 (2009)

    Google Scholar 

  5. D. Ielmini, A.L. Lacaita, Mater. Today. 14, 600–607 (2011)

    Google Scholar 

  6. H.P. Wong, S. Salahuddin, Nat. Nanotechnol. 10, 191–194 (2015)

    ADS  Google Scholar 

  7. F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, Science 358, 1423–1427 (2017)

    ADS  Google Scholar 

  8. S. Yu, P. Chen, IEEE Solid State Circuits Mag. 8, 43–56 (2016)

    Google Scholar 

  9. P. Noé, C. Vallée, F. Hippert, F. Fillot, J. Raty, Semicond. Sci. Technol. 33, 13002 (2017)

    Google Scholar 

  10. W. Zhang, M. Wuttig, Phys. Status Solidi RRL Rapid Res. Lett. 13, 1900130 (2019)

    ADS  Google Scholar 

  11. S.G. Sarwat, Mater. Sci. Tech. Lond 33, 1890–1906 (2017)

    Google Scholar 

  12. C. Qiao, Y.R. Guo, J.J. Wang, H. Shen, S.Y. Wang, Y.X. Zheng, R.J. Zhang, L.Y. Chen, C.Z. Wang, K.M. Ho, J. Alloy. Compd. 774, 748–757 (2019)

    Google Scholar 

  13. D. Loke, T.H. Lee, W.J. Wang, L.P. Shi, R. Zhao, Y.C. Yeo, T.C. Chong, S.R. Elliott, Science 336, 1566–1569 (2012)

    ADS  Google Scholar 

  14. K. Ding, K. Ren, F. Rao, Z. Song, L. Wu, B. Liu, S. Feng, Mater. Lett. 125, 143–146 (2014)

    Google Scholar 

  15. Y. Sutou, T. Kamada, M. Sumiya, Y. Saito, J. Koike, Acta Mater. 60, 872–880 (2012)

    Google Scholar 

  16. N. Chen, X. Li, X. Wang, M. Xia, S. Xie, H. Wang, Z. Song, S. Zhang, H. Sun, Acta Mater. 90, 88–93 (2015)

    Google Scholar 

  17. D. Lencer, M. Salinga, M. Wuttig, Adv. Mater. 23, 2030–2058 (2011)

    Google Scholar 

  18. K. Kim, J. Park, J. Lee, J. Chung, S. Heo, S. Choi, Jpn. J. Appl. Phys. 49, 101201 (2010)

    ADS  Google Scholar 

  19. S.J. Wei, H.F. Zhu, K. Chen, D. Xu, J. Li, F.X. Gan, X. Zhang, Y.J. Xia, G.H. Li, Appl. Phys. Lett. 98, 231910 (2011)

    ADS  Google Scholar 

  20. Q. Yin, L. Chen, J. Alloy. Compd. 770, 692–700 (2019)

    Google Scholar 

  21. S. Sandhu, S. Kumar, R. Thangaraj, Phase Transit. 90, 1013–1024 (2017)

    Google Scholar 

  22. Y. Wang, T. Wang, G. Liu, T. Guo, T. Li, S. Lv, Y. Cheng, S. Song, K. Ren, Z. Song, Scripta Mater. 164, 25–29 (2019)

    Google Scholar 

  23. Y. Saito, Y. Sutou, J. Koike, J. Phys. Chem. C 118, 26973–26980 (2014)

    Google Scholar 

  24. T. Kamada, Y. Sutou, M. Sumiya, Y. Saito, J. Koike, Thin Solid Films 520, 4389–4393 (2012)

    ADS  Google Scholar 

  25. Y. Saito, Y. Sutou, J. Koike, Appl. Phys. Lett. 102, 51910 (2013)

    ADS  Google Scholar 

  26. T. Matsunaga, N. Yamada, Y. Kubota, Acta Crystallogr. B 60, 685–691 (2004)

    Google Scholar 

  27. Y. Lu, S. Song, X. Shen, G. Wang, L. Wu, Z. Song, B. Liu, S. Dai, J. Alloy. Compd. 586, 669–673 (2014)

    Google Scholar 

  28. V. Bragaglia, B. Jenichen, A. Giussani, K. Perumal, H. Riechert, R. Calarco, J. Appl. Phys. 116, 54913 (2014)

    ADS  Google Scholar 

  29. W.K. Njoroge, H. Wöltgens, M. Wuttig, J. Vac. Sci. Technol. A Vac. Surf. Films 20, 230–233 (2002)

    ADS  Google Scholar 

  30. J. Orava, A.Á. Greer, B. Gholipour, D.W. Hewak, C.E. Smith, Nat. Mater. 11, 279 (2012)

    ADS  Google Scholar 

  31. J. Akola, R.O. Jones, Phys. Rev. B 76, 235201 (2007)

    ADS  Google Scholar 

  32. M.A. Paesler, D.A. Baker, G. Lucovsky, A.E. Edwards, P.C. Taylor, J. Phys. Chem. Solids 68, 873–877 (2007)

    ADS  Google Scholar 

  33. D.A. Baker, M.A. Paesler, G. Lucovsky, S.C. Agarwal, P.C. Taylor, Phys. Rev. Lett. 96, 255501 (2006)

    ADS  Google Scholar 

  34. A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominaga, T. Uruga, Nat. Mater. 3, 703 (2004)

    ADS  Google Scholar 

  35. S. Caravati, M. Bernasconi, T.D. Kühne, M. Krack, M. Parrinello, Appl. Phys. Lett. 91, 171906 (2007)

    ADS  Google Scholar 

  36. R.O. Jones, Rev. Mod. Phys. 87, 897 (2015)

    ADS  Google Scholar 

  37. R. Jeyasingh, S.W. Fong, J. Lee, Z. Li, K. Chang, D. Mantegazza, M. Asheghi, K.E. Goodson, H.P. Wong, Nano Lett. 14, 3419–3426 (2014)

    ADS  Google Scholar 

  38. M. Salinga, E. Carria, A. Kaldenbach, M. Bornhöfft, J. Benke, J. Mayer, M. Wuttig, Nat. Commun. 4, 2371 (2013)

    ADS  Google Scholar 

  39. S. Senkader, C.D. Wright, J. Appl. Phys. 95, 504–511 (2004)

    ADS  Google Scholar 

  40. Y. Choi, M. Jung, Y. Lee, Electrochem. Solid State Lett. 12, F17–F19 (2009)

    Google Scholar 

  41. P. Sonnweber-Ribic, P. Gruber, G. Dehm, E. Arzt, Acta Mater. 54, 3863–3870 (2006)

    Google Scholar 

  42. W. Zhang, I. Ronneberger, P. Zalden, M. Xu, M. Salinga, M. Wuttig, R. Mazzarello, Sci. Rep. 4, 6529 (2014)

    ADS  Google Scholar 

  43. U. Ross, A. Lotnyk, E. Thelander, B. Rauschenbach, J. Alloy. Compd. 676, 582–590 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 51771023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leng Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Chen, L. Effect of Cu doping on microstructure and thermal stability of Ge2Sb2Te5 thin film. Appl. Phys. A 125, 564 (2019). https://doi.org/10.1007/s00339-019-2865-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2865-5

Navigation