Skip to main content
Log in

Structural, optical, optoelectrical and photovoltaic properties of the thermally evaporated Sb2Se3 thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Production of inexpensive and promising light-absorbing materials is very important in photovoltaic device applications. In this study, we investigate the preparation of good-quality antimony selenide (Sb2Se3) thin films via thermal evaporation procedure with different thicknesses (241, 315, 387 and 429 nm). The analysis of the X-ray diffraction examination of the Sb2Se3 thin films demonstrates that the as-deposited Sb2Se3 thin films are polycrystalline with a single-phase orthorhombic structure. The elemental composition analysis of the evaporated Sb2Se3 thin film established that the as-deposited film has near stoichiometric composition of the compound. The linear optical results of the Sb2Se3 thin films revealed that the films show optical direct transitions and optical energy gaps in the range 1.12–1.05. The optoelectrical parameters of the Sb2Se3 thin films (ratio of the charge carrier concentrations to the effective mass \(N_{\text{opt}} m\), optical electronegativity \(\xi_{\text{opt}}\) and the lattice dielectric constant, \(\varepsilon_{L}\)) were estimated. The analysis of nonlinear optical parameters of the Sb2Se3 thin films reveals the increase of the film thickness combined with increase in the nonlinear refractive index. The Al/n-Si/Sb2Se3/Ag heterojunction was produced by the thermal evaporation technique. The photovoltaic constants of the Al/n-Si/Sb2Se3/Ag heterojunction were estimated from the JV curve and demonstrate a solar efficiency of 4.03%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. Koç, M. Sahin, Appl. Phys. A 125, 705 (2019)

    ADS  Google Scholar 

  2. V. Pawar, M. Kumar, P.K. Dubey, M.K. Singh, A.S.K. Sinha, P. Singh, Appl. Phys. A 125, 10 (2019)

    Google Scholar 

  3. Y. Zhou, Y. Huang, J. Pang, K. Wang, J. Power Sources 440, 227149 (2019)

    Google Scholar 

  4. K.D. Arun, K.R. Thomas, S.V.V. Ganesh, M. Shkir, S.A.J. Thirumalai, Appl. Phys. A 30, 12566–12576 (2019)

    Google Scholar 

  5. Q. Hao, J. Pang, Y. Zhang, J. Wang, L. Ma, O.G. Schmidt, Adv. Opt. Mater. 6, 1 (2018)

    ADS  Google Scholar 

  6. K.S.S. Rasool, K.T.R. Reddy, A.M.S.M.S. Tivanov, S.E.T.O.V. Korolik, Appl. Phys. A 125, 704 (2019)

    ADS  Google Scholar 

  7. M. Muhyuddin, M. Tayyab, A. Ijaz, A. Talha, F. Khan, M. Aftab, M.A. Basit, Appl. Phys. A 125, 716 (2019)

    ADS  Google Scholar 

  8. A.S.M. Ahmad, R. Shakil, K. Uzma, A. Zahid, A. Afzal, K.A. Mahmood, Appl. Phys. A 125, 713 (2019)

    ADS  Google Scholar 

  9. E.A. El-Sayad, J. Non. Cryst. Solids 354, 3806 (2008)

    ADS  Google Scholar 

  10. V.L. Deringer, R.P. Stoffel, M. Wuttig, R. Dronskowski, Chem. Sci. 6, 5255 (2015)

    Google Scholar 

  11. Y. Zhou, M. Leng, Z. Xia, J. Zhong, H. Song, X. Liu, B. Yang, J. Zhang, J. Chen, K. Zhou, Adv. Energy Mater. 4, 1301846 (2014)

    Google Scholar 

  12. J. Ma, Y. Wang, Y. Wang, Q. Chen, J. Lian, W. Zheng, J. Phys. Chem. C 113, 13588 (2009)

    Google Scholar 

  13. A.P. Torane, K.Y. Rajpure, C.H. Bhosale, Mater. Chem. Phys. 61, 219 (1999)

    Google Scholar 

  14. K. Shen, C. Ou, T. Huang, H. Zhu, J. Li, Z. Li, Y. Mai, Sol. Energy Mater. Sol. Cells 186, 58 (2018)

    Google Scholar 

  15. X. Hu, J. Tao, S. Chen, J. Xue, G. Weng, Z. Hu, J. Jiang, S. Chen, Z. Zhu, J. Chu, Sol. Energy Mater. Sol. Cells 187, 170 (2018)

    Google Scholar 

  16. C. Yuan, L. Zhang, W. Liu, C. Zhu, Sol. Energy 137, 256 (2016)

    ADS  Google Scholar 

  17. C. Ou, K. Shen, Z. Li, H. Zhu, T. Huang, Y. Mai, Sol. Energy Mater. Sol. Cells 194, 47 (2019)

    Google Scholar 

  18. C. Chen, Y. Zhao, S. Lu, K. Li, Y. Li, B. Yang, W. Chen, L. Wang, D. Li, H. Deng, Adv. Energy Mater. 7, 1700866 (2017)

    Google Scholar 

  19. D.-B. Li, X. Yin, C.R. Grice, L. Guan, Z. Song, C. Wang, C. Chen, K. Li, A.J. Cimaroli, R.A. Awni, Nano. Energy 49, 346 (2018)

    Google Scholar 

  20. Y. Cao, X. Zhu, H. Chen, X. Zhang, J. Zhouc, Z. Hu, J. Pang, Sol. Energy Mater. Sol. Cells 200, 109945 (2019)

    Google Scholar 

  21. C. Chen, W. Li, Y. Zhou, C. Chen, M. Luo, X. Liu, K. Zeng, B. Yang, C. Zhang, J. Han, Appl. Phys. Lett. 107, 43905 (2015)

    Google Scholar 

  22. G.-X. Liang, X.-H. Zhang, H.-L. Ma, J.-G. Hu, B. Fan, Z.-K. Luo, Z.-H. Zheng, J.-T. Luo, P. Fan, Sol. Energy Mater. Sol. Cells 160, 257 (2017)

    Google Scholar 

  23. M.-Z. Xue, Z.-W. Fu, J. Alloys Compd. 458, 351 (2008)

    Google Scholar 

  24. Y. Rodríguez-Lazcano, Y. Peña, M.T.S. Nair, P.K. Nair, Thin Solid Films 493, 77 (2005)

    ADS  Google Scholar 

  25. A.M. Mansour, I.S. Yahia, I.M.E. Radaf, Mater. Res. Express 5, 076406 (2018)

    ADS  Google Scholar 

  26. I.M. El Radaf, M. Nasr, A.M. Mansour, Mater. Res. Express 5, 015904 (2018)

    ADS  Google Scholar 

  27. A. Sawaby, M.S. Selim, S.Y. Marzouk, M.A. Mostafa, A. Hosny, Phys. B Condens. Matter 405, 3412 (2010)

    ADS  Google Scholar 

  28. E.R. Shaaban, N. Afify, A. El-Taher, J. Alloys Compd. 482, 400 (2009)

    Google Scholar 

  29. I.M. El Radaf, T.A. Hameed, G.M. El Kommy, T.M. Dahy, Ceram. Int. 45, 3072 (2019)

    Google Scholar 

  30. T.A. Hameed, A.R. Wassel, I.M. El Radaf, J. Alloys Compd. 805, 1 (2019)

    Google Scholar 

  31. I.M. El Radaf, S.S. Fouad, A.M. Ismail, G.B. Sakr, Mater. Res. Express 5, 046406 (2018)

    ADS  Google Scholar 

  32. S. Fouad, I. El Radaf, P. Sharma, M. El-Bana, J. Alloys Compd 757, 124–133 (2018)

    Google Scholar 

  33. S.A. Khan, F.S. Al-Hazmi, S. Al-Heniti, A.S. Faidah, A.A. Al-Ghamdi, Curr. Appl. Phys. 10, 145 (2010)

    ADS  Google Scholar 

  34. E.R. Shaaban, M.N. Abd-el Salam, M. Mohamed, M.A. Abdel-Rahim, A.Y. Abdel-Latief, J. Mater. Sci. Mater. Electron 28, 13379 (2017)

    Google Scholar 

  35. A.A.A. Darwish, M. Rashad, A.E. Bekheet, M.M. El-Nahass, J. Alloys Compd. 709, 640 (2017)

    Google Scholar 

  36. S.H. Wemple, M. DiDomenico Jr., Phys. Rev. B 3, 1338 (1971)

    ADS  Google Scholar 

  37. S.H. Wemple, Phys. Rev. B 7, 3767 (1973)

    ADS  Google Scholar 

  38. K.A. Aly, Appl. Phys. A 99, 913 (2010)

    ADS  Google Scholar 

  39. P. Sharma, S.C. Katyal, Mater. Chem. Phys. 112, 892 (2008)

    Google Scholar 

  40. M.S. El-Bana, I.M. El Radaf, S.S. Fouad, G.B. Sakr, J. Alloys Compd. 705, 333–339 (2017)

    Google Scholar 

  41. P. Sharma, M.S. El-Bana, S.S. Fouad, V. Sharma, J. Alloys Compd. 667, 204 (2016)

    Google Scholar 

  42. A.S. Hassanien, J. Alloys Compd. 671, 566 (2016)

    Google Scholar 

  43. R.R. Reddy, K.R. Gopal, K. Narasimhulu, L.S.S. Reddy, K.R. Kumar, C.V.K. Reddy, S.N. Ahmed, Opt. Mater. (Amst). 31, 209 (2008)

    ADS  Google Scholar 

  44. S.S. Fouad, E.A.A. El-Shazly, M.R. Balboul, S.A. Fayek, M.S. El-Bana, J. Mater. Sci.: Mater. Electron. 17, 193 (2006)

    Google Scholar 

  45. A. Saeed, I. Sharma, Opt. Int. J. Light Electron Opt 200, 163415 (2020)

    Google Scholar 

  46. I.M. El Radaf, T.A. Hamid, I.S. Yahia, Mater. Res. Express 5, 066416 (2018)

    ADS  Google Scholar 

  47. A.S. Hassanien, I. Sharma, J. Alloys Compd. 798, 750 (2019)

    Google Scholar 

  48. I.S. Yahia, I.M. El Radaf, A.M. Salem, G.B. Sakr, J. Alloys Compd 766, 1056–1062 (2019)

    Google Scholar 

  49. A.S. Hassanien, A.A. Akl, Phys. B Phys. Condens. Matter 554, 21–30 (2019)

    Google Scholar 

  50. R.M. Abdelhameed, I.M. El Radaf, Mater. Res. Express 5, 66402 (2018)

    Google Scholar 

  51. H. Tichá, L. Tichý, J. Optoelectron. Adv. Mater. 4, 381 (2002)

    Google Scholar 

  52. M.M. El-Nahass, A.A.M. Farag, Opt. Laser Technol. 44, 497 (2012)

    ADS  Google Scholar 

  53. I.M. El Radaf, R.M. Abdelhameed, J. Alloys Compd 765, 1174–1183 (2018)

    Google Scholar 

  54. K.F. Abd El-Rahman, A.A.A. Darwish, E.A.A. El-Shazly, Mater. Sci. Semicond. Process. 25, 123 (2014)

    Google Scholar 

  55. A. Ashery, I.M. El Radaf, M.M.M. Elnasharty, Silicon 1876, 9918 (2018)

    Google Scholar 

  56. I.M. El Radaf, H.I. Elsaeedy, H.A. Yakout, M.T. El Sayed, J. Electron. Mater. 48, 6480–6486 (2019)

    ADS  Google Scholar 

  57. M. Nasr, I.M. El Radaf, A.M. Mansour, J. Phys. Chem. Solids 115, 283–288 (2018)

    ADS  Google Scholar 

  58. A.A.A. Darwish, H.A.M. Ali, Phys. B Condens. Matter 571, 188 (2019)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. El Radaf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Radaf, I.M. Structural, optical, optoelectrical and photovoltaic properties of the thermally evaporated Sb2Se3 thin films. Appl. Phys. A 125, 832 (2019). https://doi.org/10.1007/s00339-019-3114-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3114-7

Navigation