Skip to main content
Log in

Radiation shielding and physical properties of lead borate glass-doped ZrO2 nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zirconium oxide (ZrO2) nanoparticles have been prepared and examined by XRD. The transparent lead alkali borate glass systems of formula xZrO2–20PbO2–(80 − x)·Na2B4O7 (0 ≤ x ≤ 24 mol%) are prepared by melting quench method and doped by zirconia nanoparticles. Deconvolution of its FTIR reveals to increase the N4 fraction boron atoms. This result reveals the Zr4+ which forms BO4 network units. The density and refractive index of chosen glass are increased due to add of ZrO2 nanoparticles. Both ultrasonic velocities (longitudinal vL and shear vT) increase with the ZrO2 content increase. The packing density, bulk modulus and Young’s modulus increase with increasing of ZrO2 nanoparticle content. The attenuation coefficients of the studied glasses have been measured at different energies (356, 662, 1173 and 1332 keV) using narrow beam transmission geometry. The obtained results indicated that, the values of the mass attenuation coefficient (µm), the effective atomic number (Zeff) and effective electron density (Nel) of the glass samples decreased with the increase in the ZrO2 concentration at the energies (662,1173and 1332 keV), while these parameters (µm, Zeff and Nel) increased with the increase in the ZrO2 concentration at 356 keV. The samples are irradiated 30 min by argon glow discharge plasma (GDP). The values of optical band gap decreased slowly with ZrO2 nanoparticles increased and after plasma irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. R. Reisfeld, M. Gaft, T. Saridarov, G. Panczer, M. Zelner, Nanoparticles of cadmium sulfide with europium and terbium in zirconia films having intensified luminescence. Mater. Lett. 45, 154–156 (2000)

    Article  Google Scholar 

  2. A. Verma, R. Dwivedi, R. Prasad, K.S. Bartwal, Microwave-assisted synthesis of mixed metal-oxide nanoparticles. J. Nanoparticles 20, 13 (2013). https://doi.org/10.1155/2013/737831. (Article ID 737831)

    Article  Google Scholar 

  3. A. Mondal, S. Ram, Controlled phase transformations in Al3+ stabilized ZrO2 nanoparticles via forced hydrolysis of metal cations in water. Mater. Lett. 57, 1696–1706 (2003)

    Article  Google Scholar 

  4. Suresh Sagadevan, Jiban Podder, Isha Das, Hydrothermal synthesis of zirconium oxide nanoparticles and its characterization. J. Mater. Sci.: Mater. Electron. 27, 5622–5627 (2016)

    Google Scholar 

  5. J.D. Fidelus, A. Karbowski, S. Mariazzi, E. Werner-Malento, R.S. Brusa, W. Zhou, G.P. Karwasz, Combined positron-annihilation and structural studies of hydrothermally grown zirconia. Nanomater. Energy 10, 97–105 (2012)

    Article  Google Scholar 

  6. G. Dutta, K.P.S.S. Hembram, G.M. Rao, U.V. Waghmare, Effects of O vacancies and C doping on dielectric properties of ZrO2, a first-principles study. Appl. Phys. Lett. 8, 9 (2006). https://doi.org/10.1063/1.2388146. (Article ID 202904)

    Article  Google Scholar 

  7. G. Dercz, L. Prusik, X-ray and SEM studies on zirconia powders. J. Achiev. Mater. Manuf. Eng. 31, 408–414 (2008)

    Google Scholar 

  8. A.S. Keiteb, E. Saion, A. Zakaria, N. Soltani, Structural and optical properties of zirconia nanoparticles by thermal treatment synthesis. J. Nanomater. 5, 545 (2016). https://doi.org/10.1155/2016/1913609. (Article ID 1913609)

    Article  Google Scholar 

  9. I.F.P. Nesamani, V.L. Prabha, A. Paul, D. Nirmal, Synthesis and Dielectric studies of monoclinic nanosized zirconia. Adv. Condens. Matter Phys. 20, 14 (2014). https://doi.org/10.1155/2014/828492. (Article ID 828492)

    Article  Google Scholar 

  10. K.A. Aly, N.M. Khalil, Y. Algamal, Q.M.A. Saleem, Estimation of lattice strain for zirconia nano-particles based on Williamson-Hall analysis. Mater. Chem. Phys. 193, 182–188 (2017)

    Article  Google Scholar 

  11. M.J. Mayo, J.R. Seidensticker, D.C. Hague, A.H. Carim, Surface chemistry effects on the processing and superplastic properties of nanocrystalline oxide ceramics. Nanostruct. Mater. 11(2), 271–282 (1999)

    Article  Google Scholar 

  12. T. Chraska, A.H. King, C.C. Berndt, On the size-dependent phase transformation in nanoparticulate zirconia. Mater. Sci. Eng. A 286, 169–178 (2000)

    Article  Google Scholar 

  13. M. Gell, Application opportunities for nanostructured materials and coatings. Mater. Sci. Eng. A 204, 246–251 (1995)

    Article  Google Scholar 

  14. H. Gleiter, Materials with ultrafine microstructures: retrospectives and perspectives. Nanostruct. Mater. 1, 1–19 (1992)

    Article  Google Scholar 

  15. F. Michel, L. Cormier, P. Lombard, B. Beuneu, L. Galoisy, G. Calas, Mechanisms of boron coordination change between borosilicate glasses and melts. J. Non Cryst. Solids 379, 169–176 (2013)

    Article  ADS  Google Scholar 

  16. M. Bengisu, Borate glasses for scientific and industrial applications: a review. J. Mater. Sci. 51, 2199–2242 (2016)

    Article  ADS  Google Scholar 

  17. V. Sharma, S.P. Singh, G.S. Mudahar, K.S. Thind, Synthesis and characterization of cadmium containing sodium borate glasses. New J. Glass Ceram. 2, 150–155 (2012)

    Google Scholar 

  18. A.M. Abdelghany, The Elusory role of low-level doping transition metals in lead silicate glasses. Silicon 2(3), 179–184 (2010)

    Article  Google Scholar 

  19. A.M. Abdelghany, F.H. ElBatal, M.A. Azooz, M.A. Ouis, H.A. ElBatal, Optical and infrared absorption spectra of 3d transition metal ions-doped sodium boro-phosphate glasses and effect of gamma irradiation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 98, 148–155 (2012)

    Article  ADS  Google Scholar 

  20. A. Okasha, S.Y. Marzouk, A.H. Hammad, A.M. Abdelghany, Optical character inquest of cobalt containing fluoroborate glass. Optik 142, 125–133 (2017)

    Article  ADS  Google Scholar 

  21. R.M. Ramadan, A.M. Abdelghany, H.A. ElBatal, Gamma rays interactions with Bismuth phosphate glasses doped with 3d transition metal oxides. Silicon 8, 313–324 (2016). https://doi.org/10.1007/s12633-016-9545-2

    Article  Google Scholar 

  22. M.A. Marzouk, F.H. ElBatal, H.A. ElBatal, Investigation of ZnO-P2O5 glasses containing variable Bi2O3 contents through combined optical, structural, crystallization analysis and interactions with gamma rays. Silicon (2017). https://doi.org/10.1007/s12633-016-9503-z

    Article  Google Scholar 

  23. R.M. Ramadan, A.M. Abdelghany, H.A. ElBatal, Gamma rays interactions with bismuth phosphate glasses doped with 3d transition metal oxides. Silicon (2018). https://doi.org/10.1007/s12633-016-9545-2

    Article  Google Scholar 

  24. A.H. Hammad, A.M. Abdelghany, H.A. ElBatal, Thermal, structural, and morphological investigations of modified bismuth silicate glass-ceramics. Silicon 9(2), 239–248 (2017)

    Article  Google Scholar 

  25. F.H. ElBatal, A.M. Abdelghany, H.A. ElBatal, Characterization by combined optical and FT infrared spectra of 3d-transition metal ions doped-bismuth silicate glasses and effects of gamma irradiation. Spectrochimica Acta (A) 122, 461 (2014)

    Article  ADS  Google Scholar 

  26. M.G. Moustafa, M.Y. Hassaan, Optical and dielectric properties of transparent ZrO2–TiO2–Li2B4O7 glass system. J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom

    Article  Google Scholar 

  27. A. El-Adawy, Y. Moustafa, Elastic properties of bismuth borate glasses. J. Phys. D Appl. Phys. 32, 2791–2796 (1999)

    Article  ADS  Google Scholar 

  28. A. Makishima, J.D. Mackenzie, Direct calculation of Young’s modulus. J. Non Cryst. Solids 12, 35–45 (1973)

    Article  ADS  Google Scholar 

  29. A. Makishima, J.D. Mackenzie, Calculation of bulk modulus, shear modulus, and Poisson’s ratio. J. Non Cryst. Solids 17, 147–157 (1975)

    Article  ADS  Google Scholar 

  30. M.E. Mahmoud, R.M. El-Sharkawy, E.A. Allam, R. Elsaman, A. El-Taher, Fabrication and characterization of phosphortungstic acid—copper oxide nanoparticles—plastic waste nanocomposites for enhanced radiation-shielding. J. Alloys Compd. 803, 768–777 (2019)

    Article  Google Scholar 

  31. H.E. Hassan, H.M. Badran, A. Aydarous, T. Sharshar, Studying the effect of nano lead compounds additives on the concrete shielding properties for γ-rays. Nucl. Instr. Methods Phys. Res. B 360, 81–89 (2015)

    Article  ADS  Google Scholar 

  32. A.S. Wagha, S.Y. Sayenko, A.N. Dovbnya, V.A. Shkuropatenko, R.V. Tarasov, A.V. Rybka, A.A. Zakharchenko, Durability and shielding performance of borated ceramicrete coatings in beta and gamma radiation fields. J. Nucl. Mater. 462, 165–172 (2015)

    Article  ADS  Google Scholar 

  33. D.K. Gaikwad, M.I. Sayyed, S.S. Obaid, S.A.M. Issa, P.P. Pawar, Gamma ray shielding properties of TeO2–ZnF2–As2O3–Sm2O3 glasses. J. Alloy Compd. 765, 451–458 (2018)

    Article  Google Scholar 

  34. M.I. Sayyed, F. Akman, V. Turan, A. Araz, Evaluation of radiation absorption capacity of some soil samples. Radiochim. Acta 107(1), 83–93 (2018)

    Article  Google Scholar 

  35. F. Akman, R. Durak, M.F. Turhan, M. Kaçal, R, Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Appl. Radiat. Isot. 101, 107–113 (2015)

    Article  Google Scholar 

  36. F. Akman, Z.Y. Khattari, M.R. Kaçal, M.I. Sayyed, F. Afaneh, The radiation shielding features for some silicide, boride and oxide types ceramics. Radiat. Phys. Chem. 160, 9–14 (2019)

    Article  ADS  Google Scholar 

  37. M.R. Kacal, F. Akman, M.I. Sayyed, Investigation of radiation shielding properties for some ceramics. Radiochimica Acta 107(2), 179–191 (2018)

    Article  Google Scholar 

  38. S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, H.O. Tekin, Y. Elmahroug, P.P. Pawar, Photon attenuation coefficients of different rock samples using MCNPX, Geant4 simulation codes and experimental results: a comparison study. Radiat. Effect Defects Solids 173(11-12), 900–914 (2018)

    Article  Google Scholar 

  39. P. Vani, G. Vinitha, M.I. Sayyed, B.O. Elbashir, N. Manikandan, Investigation on structural, optical, thermal and gamma photon shielding properties of zinc and barium doped fluorotellurite glasses. J. Non Cryst. Solids 511, 194–200 (2019)

    Article  ADS  Google Scholar 

  40. V.V. Awasarmol, D.K. Gaikwad, S.S. Obaid, P.P. Pawar, Gamma radiation studies on organic nonlinear optical materials in the energy range 122–1330 keV. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 6, 1–6 (2019). https://doi.org/10.1007/s40010-019-00636-1

    Article  Google Scholar 

  41. D.K. Gaikwad, M.I. Sayyed, S.N. Botewad, S.S. Obaid, Z.Y. Khattari, U.P. Gawai, P.P. Pawar, Physical, structural, optical investigation and shielding features of tungsten bismuth tellurite-based glasses. J. Non Cryst. Solids 503–504, 158–168 (2019)

    Article  ADS  Google Scholar 

  42. S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete. Radiat. Phys. Chem. 144, 356–360 (2018)

    Article  ADS  Google Scholar 

  43. S. Tuscharoen, J. Kaewkhao, P. Limkitjaroenporn, P. Limsuwan, W. Chewpraditkul, Improvement of BaO: B2O3: fly ash glasses: radiation shielding, physical and optical properties. Ann. Nucl. Energy 49, 109–113 (2012)

    Article  Google Scholar 

  44. S.R. Manohara, S.M. Hanagodimath, L. Gerward, Photon interaction and energy absorption in glass: a transparent gamma ray shield. J. Nucl. Mater. 393, 465–472 (2009)

    Article  ADS  Google Scholar 

  45. Cherdsak Bootjomchai, Jintana Laopaiboon, Chadet Yenchai, Raewat Laopaiboon, Gamma-ray shielding and structural properties of barium–bismuth–borosilicate glasses. Radiat. Phys. Chem. 81, 785–790 (2012)

    Article  ADS  Google Scholar 

  46. K.H.S. Shaaban, Y.B. Saddeek, M.A. Sayed, I.S. Yahia, Mechanical and thermal properties of lead borate glasses containing CaO and NaF. Silicon (2017). https://doi.org/10.1007/s12633-016-9519-4

    Article  Google Scholar 

  47. K.H.S. Shaaban, S.M. Abo-naf, A.M. Abd Elnaeim, M.E.M. Hassouna, Studying effect of MoO3 on elastic and crystallization behavior of lithium diborate glasses. Appl. Phys. A 123, 457–466 (2017)

    Article  ADS  Google Scholar 

  48. K.H.S. Shaaban, Y.B. Saddeek, K.A. Aly, Physical properties of Dy2O3 in Na2B4O7–SiO2–MoO3 glasses. Ceram. Int. 44(4), 3862–3867 (2018)

    Article  Google Scholar 

  49. K.S. Shaaban, Y.B. Saddeek, Effect of MoO3 content on structural, thermal, mechanical and optical properties of (B2O3–SiO2–Bi2O3–Na2O–Fe2O3) glass system. Silicon 9(5), 785–793 (2017)

    Article  Google Scholar 

  50. Y.B. Saddeek, K. Aly, Gh Abbady, N. Afify, K.H.S. Shaaban, A. Dahshan, Optical and structural evaluation of bismuth alumina-borate glasses doped with different amounts of (Y2O3). J. Non Cryst. Solids 454, 13–18 (2016)

    Article  ADS  Google Scholar 

  51. S.Shaaban Kh, A.A. El-Maaref, M. Abdelawwad, Yasser B. Saddeek, H. Wilke, H. Hillmer, Spectroscopic properties and Judd-Ofelt Analysis of Dy3+ ions in molybdenum borosilicate glasses. J. Luminesc. 196, 477–484 (2018)

    Article  Google Scholar 

  52. E.R. Shaaban, E.A.A. Wahab, M. Ahmed, Optical characterization of As–S thin films induced by plasma immersion O- ion implantation. Phys. Scr. 88, 7 (2013). https://doi.org/10.1088/0031-8949/88/01/015703

    Article  Google Scholar 

  53. J.H. Hubbell, S.M. Seltzer, Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV–20 MeV for elements 1˂ Z˂ 92 and 48 additional substances of dosimetric interest (National Institute of Standards and Physics Laboratory, London, 1995)

    Book  Google Scholar 

  54. D.C. Wang, L.A. Ping, H. Yang, Measurement of the mass attenuation coefficients for SiH4 and Si. Nucl. Instrum. Methods B 95, 161–165 (1995)

    Article  ADS  Google Scholar 

  55. S. Kulwant, S. Harvinder, S. Vishal, N. Rohila, K. Atul, R. Kumar, S.S. Bhatti, H.S. Sahota, Gamma-ray attenuation coefficients in bismuth borate glasses. Nucl. Instrum. Methods B 194, 1–6 (2002)

    Article  Google Scholar 

  56. H. Doweidar, Y.B. Saddeek, FTIR and ultrasonic investigations on modified bismuth borate glasses. J. Non Cryst. Solids 3, 348–355 (2009)

    Article  ADS  Google Scholar 

  57. A.S.S. Reddy IV, V.R.Kumar Kityk, J. Jedryka, K. Ozga, N. Venkatramaiah, N. Veeraiah, Third order nonlinear optical effects of ZnO–ZrO2 B2O3 glass ceramics embedded with ZnZrO3 perovskite crystal phases. J. Mater. Sci: Mater Electron (2017). https://doi.org/10.1007/s10854-017-7551-9

    Article  Google Scholar 

  58. E.M.A. Khalil, F.H. El-Batal, Y.M. Hamdy, H.M. Zidan, M.S. Aziz, A.M. Abdelghany, UV-visible and IR spectroscopic studies of gamma irradiated transition metal doped lead silicate glasses. Silicon 2, 49–60 (2010)

    Article  Google Scholar 

  59. F.H. El-Batal, E.M. Khalil, Y.M. Hamdy, H.M. Zidan, M.S. Aziz, A.M. Abdelghany, FTIR spectral analysis of corrosion mechanisms in soda lime silica glasses doped with transition metal oxides. Silicon 2, 41–47 (2010)

    Article  Google Scholar 

  60. H. Doweidar, Y.B. Saddeek, Effect of La2O3 on the structure of lead borate glasses. J. Non Cryst. Solids 356, 1452–1457 (2010)

    Article  ADS  Google Scholar 

  61. K.S. Shaaban, S. Abo-Naf, M. Hassouna, Physical and structural properties of lithium borate glasses containing MoO3. Silicon (2017). https://doi.org/10.1007/s12633-016-9519-4

  62. A. Kannappan, S. Thirumaran, R. Palani, Elastic and mechanical properties of glass specimen by ultrasonic method. ARPN J. Eng. Appl. Sci. 4(1), 27–31 (2009)

    Google Scholar 

  63. Raewat Laopaiboon, Cherdsak Bootjomchai, Influence of CeO2 on structural properties of glasses by using ultrasonic technique: comparison between the local sand and SiO2. Ultrasonic 53, 907–912 (2013)

    Article  Google Scholar 

  64. K.H.S. Shaaban, Y.B. Saddeek, K. Aly, Physical properties of pseudo quaternary Na2B4O7–SiO2–MoO3–Dy2O3 glasses. Ceram. Int. 44, 3862–3867 (2018)

    Article  Google Scholar 

  65. Ulrike Veit, Christian Rüssel, Elastic properties of quaternary glasses in the MgO–CaO–Al2O3–SiO2 system: modelling versus measurement. J. Mater. Sci. 52, 8159–8175 (2017)

    Article  ADS  Google Scholar 

  66. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, XCOM: photon cross sections database (1998)

  67. J. Woods, Computational methods in reactor shielding, 1st edn. (Pergamon, New York, 1982)

    Google Scholar 

  68. Y.B. Saddeek, Kh.S. Shaaban, R. Elsaman, A. El-Taher, T.Z. Amer, Attenuation-density anomalous relationship of lead alkali borosilicate Glasses. Radiat. Phys. Chem. 150, 182–188 (2018)

    Article  ADS  Google Scholar 

  69. N.F. Mott, E.A. Davis, Electronic processes in non- crystalline materials, 2nd edn. (Oxford University Press, Oxford, 1977)

    Google Scholar 

  70. N.S. Sabri, A.K. Yahya, M.K. Talari, Anomalous optical properties of xSrO–10PbO–(90–x)·B2O3 glass system. Trans. Indian Inst. Met. (2017). https://doi.org/10.1007/s12666-017-1043-8

    Article  Google Scholar 

  71. D. Saritha, Y. Markandeya, M. Salagram, M. Vithal, A.K. Singh, G. Bhikshamaiah, Effect of Bi2O3 on physical, optical and structural studies of ZnO–Bi2O3–B2O3 glasses. J Non Cryst Solids 354, 5573–5579 (2008)

    Article  ADS  Google Scholar 

  72. K.A. Aly, Discussion on the interrelationship between structural, optical, electronic and elastic properties of materials. J. Alloy. Compd. 630, 178–182 (2015)

    Article  Google Scholar 

  73. E.A.A. Wahab, K.S. Shaaban, Effects of SnO2 on spectroscopic properties of borosilicate glasses before and after plasma treatment and its mechanical properties. Mater. Res. Express 5, 025207 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Al-Azhar University for supporting with some of experimental measurements. In addition, the authors thank the Deanship of Scientific Research at King Khalid University (KKU) for funding this research project, Number: (R.G.P2./24/40) under research center for advanced material science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Abdel Wahab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel Wahab, E.A., Shaaban, K.S., Elsaman, R. et al. Radiation shielding and physical properties of lead borate glass-doped ZrO2 nanoparticles . Appl. Phys. A 125, 869 (2019). https://doi.org/10.1007/s00339-019-3166-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3166-8

Navigation