Skip to main content
Log in

High-sensitivity and high-selectivity detection of methanol based on La-doped SnO2 sensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pure SnO2 and La-doped SnO2 nanocomposite were prepared through hydrothermal method, and their gas sensing performances were studied. Results indicate that the sensing response of the 5 wt% La-doped SnO2 nanocomposite reached 29.5 when exposed to 75 ppm methanol at the optimal operating temperature of 220 °C, which was over seven times larger than that of pure SnO2 nanoparticles. In addition, the response and recovery time were shortened to 12 s and 7 s, respectively. Moreover, the 5 wt% La-doped SnO2 nanocomposite presents a good selectivity toward methanol among methanal, methanol, ammonia, acetone and benzene gases. The improvement in the gas sensing properties of the 5 wt% La-doped SnO2 nanocomposite toward methanol can be attributed to the smaller crystallite size, larger surface area and the modified chemical nature of nanocomposite surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Siciliano, Preparation, characterization and applications of thin films for gas sensors prepared by cheap chemical method. Sens. Actuators B: Chem. 70, 153–164 (2000)

    Google Scholar 

  2. A.J. Paine, A.D. Dayan, Defining a tolerable concentration of methanol in alcoholic drinks. Hum. Exp. Toxical. 20, 563–568 (2001)

    Google Scholar 

  3. S. Srinives, T. Sarkar, A. Mulchandani, Primary amine-functionalized polyaniline nano thin film sensor for detecting formaldehyde. Sens. Actuators B: Chem. 194, 255–259 (2014)

    Google Scholar 

  4. I. Singh, S. Dey, S. Santra, K. Landfester, R. Muñoz-Espí, A. Chandra, Cerium-doped copper oxide hollow nanostructures as efficient and tunable sensors for volatile organic compounds. ACS Omega 3, 5029–5037 (2018)

    Google Scholar 

  5. G. Li, Z. Cheng, Q. Xiang, L. Yan, X. Wang, X. Jiaqiang, Biometal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sens. Actuators B: Chem. 283, 590–601 (2019)

    Google Scholar 

  6. Y. Zhang, X. Cai, L. Song, F. Feng, J. Ding, F. Gong, 2D nanosheet-assembled Pd-ZnO microflowers for acetone sensor with enhanced performances. J. Phys. Chem. Solids 124, 330–335 (2019)

    ADS  Google Scholar 

  7. Y. Shen, T. Yamazaki, Z. Liu, C. Jin, T. Kikuta, N. Nakatani, Porous SnO2 sputtered films with high H2 sensitivity at low operation temperature. Thin Solid Films 516, 5111–5117 (2008)

    ADS  Google Scholar 

  8. S. Xu, J. Gao, L. Wang, K. Kan, Y. Xie, P. Shen, L. Li, K. Shi, Role of the heterojunctions in In2O3-composite SnO2 nanorod sensors and their remarkable gas-sensing performance of NOx at room temperature. Nanoscale 7, 14643–14651 (2015)

    ADS  Google Scholar 

  9. P. Tyagi, A. Sharma, M. Tomar, V. Gupta, Metal oxide catalyst assisted SnO2 thin film based SO2 gas sensor. Sens. Actuators B: Chem. 224, 282–289 (2016)

    Google Scholar 

  10. S. Wang, J. Yang, H. Zhang, Y. Wang, X. Gao, L. Wang, Z. Zhu, One-pot synthesis of 3D hierarchical SnO2 nanostructures and their application for gas sensor. Sens. Actuators B: Chem. 153, 11–16 (2011)

    Google Scholar 

  11. W. Tang, J. Wang, P. Yao, X. Li, Hollow hierarchical SnO2-ZnO composite nanofibers with heterostructure based on electrospinning method for detecting methanol. Sens. Actuators B: Chem. 192, 543–549 (2014)

    Google Scholar 

  12. M. Zhao, X. Wang, L. Ning, H. He, J. Jia, L. Zhang, X. Li, Synthesis and optical properties of Mg-doped ZnO nanofibers prepared by electrospinning. J. Alloys Compd. 507, 97–100 (2010)

    Google Scholar 

  13. M. Hjiri, R. Dhahri, L. El Mir, A. Bonavita, N. Donato, S.G. Leonardi, G. Neri, CO sensing properties of Ga-doped ZnO prepared by sol-gel route. J. Alloys Compd. 634, 187–192 (2015)

    Google Scholar 

  14. K.R. Jawaher, R. Indirajith, S. Krishnan, R. Robert, S.K.K. Pasha, K. Deshmukh, S.J. Das, Hydrothermal synthesis of CeO2-SnO2 nanocomposite with highly enhanced gas sensing performance towards n-butanol. J. Sci. Adv. Mater. Devices 3, 139–144 (2018)

    Google Scholar 

  15. T. Liu, Y. Zhang, X. Yang, X. Hao, X. Liang, F. Liu, X. Fangmeng Liu, J.O. Yang, L. Geyu, CeO2-based mixed potential type acetone sensor using MFeO3 (M: Bi, La and Sm) sensing electrode. Sens. Actuators B: Chem. 276, 489–498 (2018)

    Google Scholar 

  16. H. Shan, C. Liu, L. Liu, S. Li, L. Wang, X. Zhang, X. Bo, X. Chi, Highly sensitive acetone sensors based on La-doped α-Fe2O3 nanotubes. Sens. Actuators B: Chem. 184, 243–247 (2013)

    Google Scholar 

  17. W. Zheng, Z. Li, H. Zhang, W. Wang, Y. Wang, C. Wang, Electrospinning route forα-Fe2O3 ceramic nanofibers and their gas sensing properties. Mater. Res. Bull. 44, 1432–1436 (2009)

    Google Scholar 

  18. S. Mehta, D. Nadargi, M. Tamboli, V. Patil, I. Mulla, S. Suryavanshi, Macroporous WO3: Tunable morphology as a function of glycine concentration and its excellent acetone sensing performance. Ceram. Int. 45, 409–414 (2019)

    Google Scholar 

  19. Y.M. Sabri, A.E. Kandjani, S.S. Alaudeen, A.H. Rashid, C.J. Harrison, S.J. Ippolito, S.K. Bhargava, Soot template TiO2 fractals as a photoactive gas sensor for acetone detection. Sens. Actuators B: Chem. 275, 215–222 (2018)

    Google Scholar 

  20. Q. Ji, I. Honma, S.M. Paek, M. Akada, J.P. Hill, A. Vinu, K. Ariga, Layer-by-layer films of grapheme and ionic liquids for highly selective gas sensing. Angew. Chem. 49, 9737–9739 (2010)

    Google Scholar 

  21. J. Wang, X. Yanmei, X. Weichao, M. Zhang, X. Chen, Simplified preparation of SnO2 inverse opal for methanol gas sensing performance. Micropor. Mesopor. Mater. 208, 93–97 (2015)

    Google Scholar 

  22. H. Liu, D. Wei, Y. Yan, A. Li, X. Chuai, G. Lu, Y. Wang, Silver nanowire templating synthesis of mesoporous SnO2 nanotubes: an effective gas sensor for methanol with a rapid response and recovery. Chem. Sel. 3, 7741–7748 (2018)

    Google Scholar 

  23. L.L. Wang, Z.J. Li, L. Luo, C.Z. Zhao, L.P. Kang, D.W. Liu, Methanol sensing properties of honeycomb-like SnO2 grown on silicon nanoporous pillar array. J. Alloys Compd. 682, 170–175 (2016)

    Google Scholar 

  24. G.T. Ang, G.H. Toh, M.Z. Abu Bakar, A.Z. Abdullah, M.R. Othman, High sensitivity and fast response SnO2 and La-SnO2 catalytic pellet sensors in detecting volatile organic compounds. Process. Saf. Environ. 89, 186–192 (2011)

    Google Scholar 

  25. S. Yan, X. Liang, H. Song, S. Ma, L. Yan, Synthesis of porous CeO2-SnO2 nanosheets gas sensors with enhanced sensitivity. Ceram. Int. 44, 358–363 (2018)

    Google Scholar 

  26. Y. Chen, G. Xiao, T. Wang, F. Zhang, Y. Ma, P. Gao, C. Zhu, E. Zhang, Z. Xu, Q. Li, Synthesis and enhanced gas sensing properties of crystalline CeO2/TiO2 core/shell nanorods. Sens. Actuators B: Chem. 156, 867–874 (2011)

    Google Scholar 

  27. N. Tammanoon, A. Wisitsoraat, D. Phokharatkul, A. Tuantranont, S. Phanichphant, V. Yordsri, C. Liewhiran, Highly sensitive acetone sensors based on flame-spray-made La2O3-doped SnO2 nanoparticulate thick films. Sens. Actuators B: Chem. 262, 245–262 (2018)

    Google Scholar 

  28. X. Kou, N. Xie, F. Chen, T. Wang, L. Guo, C. Wang, Q. Wang, J. Ma, Y. Sun, H. Zhang, L. Geyu, Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping. Sens. Actuators B: Chem. 256, 861–869 (2018)

    Google Scholar 

  29. M.Y. Kim, Y.N. Choi, J.M. Bae, T.S. Oh, Carbon dioxide sensitivity of La-doped thick film tin oxide gas sensor. Ceram. Int. 38S, S657–S660 (2012)

    Google Scholar 

  30. X.Q. Huang, Y. Chen, T.W. Fu, Z. Zhang, J.Q. Zhang, Study of tin electroplating process using electrochemical impedance and noise techniques. J. Electrochem. Soc. 160, D530–D537 (2013)

    Google Scholar 

  31. A.R. Babar, S.S. Shinde, A.V. Moholkar, K.Y. Rajpure, Electrical and dielectric properties of co-precipitated nanocrystalline tin oxide. J. Alloys Compd. 505, 743–749 (2010)

    Google Scholar 

  32. E.R. Leite, I.T. Weber, E. Longo, J.A. Varela, A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Adv. Mater. 12, 965–968 (2000)

    Google Scholar 

  33. O. Lupan, L. Chow, G. Chai, H. Heinrich, S. Park, A. Schulte, Synthesis of one-dimensional SnO2 nanorods via a hydrothermal technique. Phys. E Low Dimens. Syst. Nanostruct. 41, 533–536 (2009)

    ADS  Google Scholar 

  34. S. Vadivel, G. Rajarajan, Effect of Mg doping on structural, optical and photocatalytic activity of SnO2 nanostructure thin films. J. Mater. Sci.: Mater. Electron. 26, 3155–3162 (2015)

    Google Scholar 

  35. V. Ganesh, M. Arif, M.A. Manthrammel, M. Shkir, A. Singh, S. Alfaify, Effect of La doping on key characteristics of SnO2 thin films facilely fabricated by spin coating technique. Opt. Mater. 94, 277–285 (2019)

    Google Scholar 

  36. I. Kosack, V. Petrovsky, H. Anderson, P. Colomban, Raman spectroscopy of nanocrystalline ceria and zirconia thin films. J. Am. Ceram. Soc. 85, 2646–2650 (2002)

    Google Scholar 

  37. K.P. Priyanka, V.R. Revathy, P. Rosmin, B. Thrivedu, K.M. Elsa, J. Nimmymol, K.M. Balakrishna, T. Varghese, Influence of La doping on structural and optical properties of TiO2 nanocrystals. Mater. Charact. 113, 144–151 (2016)

    Google Scholar 

  38. Y. Nagasawa, T. Choso, T. Karasuda, S. Shimomura, F. Ouyang, K. Tabata, Y. Yamaguchi, Photoemission study of the interaction of a reduced thin film SnO2 with oxygen. Surf. Sci. 433–435, 226–230 (1999)

    ADS  Google Scholar 

  39. D.J. Yang, I. Kamienchick, D.Y. Youn, A. Rothschild, I.D. Kim, Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading. Adv. Funct. Mater. 20, 4258–4264 (2010)

    Google Scholar 

  40. A. Kolmakov, S. Potluri, A. Barinov, T.O. Mentes, L. Gregoratti, M.A. Nino, A. Locatelli, M. Kiskinova, Spectromicroscopy for addressing the surface and electron transport properties of individual 1-D nanostructures and their networks. ACS Nano 2, 1993–2000 (2008)

    Google Scholar 

  41. M.V. Bukhtiyarova, A.S. Ivanova, L.M. Plyasova, G.S. Litvak, V.A. Rogov, V.V. Kaichev, E.M. Slavinskaya, P.A. Kuznetsov, I.A. Polukhina, Selective catalytic reduction of nitrogen oxide by ammonia on Mn(Fe)-substituted Sr(La) aluminates. Appl. Catal. A 357, 193–205 (2009)

    Google Scholar 

  42. F. Chong, J. Wang, M. Yang, X. Su, J. Xu, B. Jiang, Effect of La doping on microstructure of SnO2 nanopowders prepared by co-precipitation method. J. Non-Cryst. Solids 357, 1172–1176 (2011)

    ADS  Google Scholar 

  43. Q. Rong, Y. Zhang, T. Lv, K. Shen, B. Zi, Z. Zhu, J. Zhang, Q. Liu, Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO3 core-shell and cage structures. Nanotechnology 29, 145503–145512 (2018)

    ADS  Google Scholar 

  44. Y. Li, D. Deng, N. Chen, X. Xing, X. Xiao, Y. Wang, Enhanced methanol sensing properties of SnO2 microspheres in a composite with Pt nanoparticles. RSC Adv. 6, 83870–83879 (2016)

    Google Scholar 

  45. Y. Bing, Y. Zeng, C. Liu, L. Qiao, W. Zheng, Synthesis of double-shelled SnO2 nano-polyhedra and their improved gas sensing properties. Nanoscale 7, 3276–3284 (2015)

    ADS  Google Scholar 

  46. Y. Li, D. Deng, X. Xing, X. Nan Chen, X.X. Liu, Y. Wang, A high performance methanol gas sensor based on palladium-platinum-In2O3 composited nanocrystalline SnO2. Sens. Actuators B: Chem. 237, 133–141 (2016)

    Google Scholar 

  47. W. Yuemei, H. Zhang, Y. Liu, W. Chen, J. Ma, S. Li, Z. Qin, Synthesis and gas sensing properties of single La-doped SnO2 nanobelts. Sensors 15, 14230–14240 (2015)

    Google Scholar 

  48. X.L. Xu, Y. Chen, S.Y. Ma, W.Q. Li, Y.Z. Mao, Excellent acetone sensor of La-doped ZnO nanofibers with unique bead-like structures. Sens. Actuators B: Chem. 213, 222–233 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support from the National Natural Science Foundation of China (Project 51801039), the Natural Science Foundation of Guizhou Province (No. [2016]1070, LKM [2013]18), the Project of Guizhou Minzu University (20185773-YB18), the Projects of Department of Education of Guizhou Province (No. [2015]424, [2016]003, [2017]003), the Natural Science Foundation of Shandong Province (ZR2019QEM003), the Project of Key Technology Research and Development Program of Shandong (2019GSF111048) and the Youth Innovation Team in Shandong Province (2019KJC020).

Author information

Authors and Affiliations

Authors

Contributions

YY conceived the idea and guided the study. YC conducted the experiment and wrote the manuscript. ZD performed XRD and Raman measurements. XX and SC carried out the XPS and SEM tests. AN polished the manuscript. YL and CC prepared the Nano material samples. YY and WC contributed to the performance test.

Corresponding author

Correspondence to Yang Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 476 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Dong, Z., Xue, X. et al. High-sensitivity and high-selectivity detection of methanol based on La-doped SnO2 sensor. Appl. Phys. A 126, 299 (2020). https://doi.org/10.1007/s00339-020-03478-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03478-6

Keywords

Navigation