Skip to main content
Log in

Gum-based cerium oxide nanoparticles for antimicrobial assay

  • Rapid communications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

CeO2 nanomaterials have attracted a wide attention due to their applications, specially, as antibacterial and antifungal agents in the biomedical applications. In the current work, Fe-doped CeO2 nanoparticles (with different iron doping concentrations) stabilized with xanthan gum as a green capping agent were prepared by co-precipitation synthesis and characterized by using X-ray diffraction, transmission electron microscope. Inhibitory activity of Fe-doped CeO2 nanoparticles was evaluated against pathogens including Pseudomonas aeruginosa, Listeria monocytogenes, Candida albicans and Fusarium oxysporum via broth micro-dilution and streak plate methods. Good to excellent antimicrobial effects were observed with nanoparticles. These compounds can be used as food preservatives according their low toxicity and acceptable antimicrobial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. M. Almasi Kashi, S. Alikhanzadeh-Arani, E. Bagherian Jebeli, A.H. Montazer, Detailed magnetic characteristics of cobalt ferrite (CoxFe3−xO4) nanoparticles synthesized in the presence of PVP surfactant. Appl. Phys. A Mater. Sci. Process. 126, 1–9 (2020)

    Google Scholar 

  2. S.F. Mansour, R. Al-Wafi, M.K. Ahmed, S. Wageh, Microstructural, morphological behavior and removal of Cr(VI) and Se(IV) from aqueous solutions by magnetite nanoparticles/PVA and cellulose acetate nanofibers. Appl. Phys. A Mater. Sci. Process. 126, 1–14 (2020)

    Google Scholar 

  3. R. Rawat, A. Tiwari, N. Arun, S.V.S.N. Rao, A.P. Pathak, S.V. Rao, A. Tripathi, Synthesis of CuO hollow nanoparticles using laser ablation: effect of fluence and solvents. Appl. Phys. A Mater. Sci. Process. 126, 1–10 (2020)

    Google Scholar 

  4. M.S. Refat, M.M. Eltabey, I.A. Ali, H.E. Hassan, Optical and electrical characteristics of thin PMMA sheets doped with Cu–Zn ferrite nanoparticles. Appl. Phys. A Mater. Sci. Process. 126, 1–9 (2020)

    Google Scholar 

  5. A.S. Vijayanandan, R.M. Balakrishnan, Photostability and electrical and magnetic properties of cobalt oxide nanoparticles through biological mechanism of endophytic fungus Aspergillus nidulans. Appl. Phys. A Mater. Sci. Process. 126, 1–13 (2020)

    Google Scholar 

  6. A.R. Abbasian, M. Shafiee Afarani, One-step solution combustion synthesis and characterization of ZnFe2O4 and ZnFe16O4 nanoparticles. Appl. Phys. A Mater. Sci. Process. 125, 721 (2019)

    ADS  Google Scholar 

  7. H. Khedri, A. Gholizadeh, Experimental comparison of structural, magnetic and elastic properties of M0.3Cu0.2Zn0.5Fe2O4 (M = Cu, Mn, Fe Co, Ni, Mg) nanoparticles. Appl. Phys. A Mater. Sci. Process. 125, 709 (2019)

    ADS  Google Scholar 

  8. A. Manohar, C. Krishnamoorthi, K.C.B. Naidu, C. Pavithra, Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method. Appl. Phys. A Mater. Sci. Process. 125, 477 (2019)

    ADS  Google Scholar 

  9. S. Pan, W. Huang, Q. Yu, X. Liu, Y. Liu, R. Liu, A rapid combustion process for the preparation of NixCu1−xFe2O4 nanoparticles and their adsorption characteristics of methyl blue. Appl. Phys. A Mater. Sci. Process. 125, 88 (2019)

    ADS  Google Scholar 

  10. S. Ramanathan, S.C.B. Gopinath, M.K. Md Arshad, P. Poopalan, F.K. Loong, T. Lakshmipriya, P. Anbu, Assorted micro-scale interdigitated aluminium electrode fabrication for insensitive electrolyte evaluation: zeolite nanoparticle-mediated micro- to nano-scaled electrodes. Appl. Phys. A Mater. Sci. Process. 125, 548 (2019)

    ADS  Google Scholar 

  11. A. Karakoti, S. Singh, J.M. Dowding, S. Seal, W.T. Self, Redox-active radical scavenging nanomaterials. Chem. Soc. Rev. 39, 4422–4432 (2010)

    Google Scholar 

  12. I. Celardo, J.Z. Pedersen, E. Traversa, L. Ghibelli, Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3, 1411–1420 (2011)

    ADS  Google Scholar 

  13. S. Rajeshkumar, P. Naik, Synthesis and biomedical applications of cerium oxide nanoparticles—a review. Biotechnol Rep 17, 1–5 (2018)

    Google Scholar 

  14. N. Thakur, P. Manna, J. Das, Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. J Nanobiotechnol 17, 84 (2019)

    Google Scholar 

  15. A. Rahdar, M. Aliahmad, M.R. Hajinezhad, M. Samani, Xanthan gum-stabilized nano-ceria: green chemistry based synthesis, characterization, study of biochemical alterations induced by intraperitoneal doses of nanoparticles in rat. J. Mol. Struct. 1173, 166–172 (2018)

    ADS  Google Scholar 

  16. N.N. Dao, M.D. Luu, Q.K. Nguyen, B.S. Kim, UV absorption by cerium oxide nanoparticles/epoxy composite thin films. Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 4 (2011)

    Google Scholar 

  17. B. Courbiere, M. Auffan, R. Rollais, V. Tassistro, A. Bonnefoy, A. Botta, J. Rose, T. Orsière, J. Perrin, Ultrastructural interactions and genotoxicity assay of cerium dioxide nanoparticles on mouse oocytes. Int. J. Mol. Sci. 14, 21613–21628 (2013)

    Google Scholar 

  18. L. De Marzi, A. Monaco, J. De Lapuente, D. Ramos, M. Borras, M. Di Gioacchino, S. Santucci, A. Poma, Cytotoxicity and genotoxicity of ceria nanoparticles on different cell lines in vitro. Int. J. Mol. Sci. 14, 3065–3077 (2013)

    Google Scholar 

  19. S.K. Kannan, M. Sundrarajan, A green approach for the synthesis of a cerium oxide nanoparticle: characterization and antibacterial activity. Int. J. Nanosci. 13, 1450018 (2014)

    Google Scholar 

  20. E.K. Goharshadi, S. Samiee, P. Nancarrow, Fabrication of cerium oxide nanoparticles: characterization and optical properties. J. Colloid Interface Sci. 356, 473–480 (2011)

    ADS  Google Scholar 

  21. R.A. Yokel, S. Hussain, S. Garantziotis, P. Demokritou, V. Castranova, F.R. Cassee, The yin: an adverse health perspective of nanoceria: uptake, distribution, accumulation, and mechanisms of its toxicity. Environ. Sci. Nano 1, 406–428 (2014)

    Google Scholar 

  22. S. Patil, A. Sandberg, E. Heckert, W. Self, S. Seal, Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28, 4600–4607 (2007)

    Google Scholar 

  23. A. Rahdar, M. Aliahmad, M. Samani, M. HeidariMajd, M.A.B.H. Susan, Synthesis and characterization of highly efficacious Fe-doped ceria nanoparticles for cytotoxic and antifungal activity. Ceram. Int. 45, 7950–7955 (2019)

    Google Scholar 

  24. V. Baldim, F. Bedioui, N. Mignet, I. Margaill, J.F. Berret, The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale 10, 6971–6980 (2018)

    Google Scholar 

  25. R. Scattergood, Cerium oxide nanoparticles as fuel additives. European Patent Office (2005) EP1587898A1587891

  26. M.R. Khaksar, M. Rahimifard, M. Baeeri, F. Maqbool, M. Navaei-Nigjeh, S. Hassani, S. Moeini-Nodeh, A. Kebriaeezadeh, M. Abdollahi, Protective effects of cerium oxide and yttrium oxide nanoparticles on reduction of oxidative stress induced by sub-acute exposure to diazinon in the rat pancreas. J. Trace Elem. Med. Biol. 41, 79–90 (2017)

    Google Scholar 

  27. T.N. Ravishankar, T. Ramakrishnappa, G. Nagaraju, H. Rajanaika, Synthesis and characterization of CeO2 nanoparticles via solution combustion method for photocatalytic and antibacterial activity studies. ChemistryOpen 4, 146–154 (2015)

    Google Scholar 

  28. E. Alpaslan, B.M. Geilich, H. Yazici, T.J. Webster, pH-controlled cerium oxide nanoparticle inhibition of both gram-positive and gram-negative bacteria growth. Sci. Rep. 7, 45859 (2017)

    ADS  Google Scholar 

  29. R. Cuahtecontzi-Delint, A. Mendez-Rojas Miguel, R. Bandala Erick, A. Quiroz Marco, S. Recillas, L. Sanchez-Salas Jose, Enhanced antibacterial activity of CeO2 nanoparticles by surfactants. Int. J. Chem. React. Eng. 11, 781 (2013)

    Google Scholar 

  30. R.P. Senthilkumar, V. Bhuvaneshwari, R. Ranjithkumar, S. Sathiyavimal, V. Malayaman, B. Chandarshekar, Synthesis, characterization and antibacterial activity of hybrid chitosan-cerium oxide nanoparticles: as a bionanomaterials. Int. J. Biol. Macromol. 104, 1746–1752 (2017)

    Google Scholar 

  31. P. Reshma, H. Ashwini, Cerium oxide nanoparticles: synthesis, characterization and study of antimicrobial activity. J. Nanomater. Mol. Nanotechnol. (2017). https://doi.org/10.4172/2324-8777.1000219

    Article  Google Scholar 

  32. Q. Maqbool, M. Nazar, S. Naz, T. Hussain, N. Jabeen, R. Kausar, S. Anwaar, F. Abbas, T. Jan, Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. Int. J. Nanomed. 11, 5015–5025 (2016)

    Google Scholar 

  33. D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, A. Nattestad, J. Chen, S. Phanichphant, Photocatalytic degradation of methyl orange by CeO2 and Fe-doped CeO2 films under visible light irradiation. Sci. Rep. 4, 5757 (2014)

    ADS  Google Scholar 

  34. B. Shirke, A. Patil, P. Hankare, P.K.M. Garadkar, Synthesis of cerium oxide nanoparticles by microwave technique using propylene glycol as a stabilizing agent. J. Mater. Sci. Mater. Electron. 22, 200–203 (2011)

    Google Scholar 

  35. S. Soren, S.R. Jena, L. Samanta, P. Parhi, Antioxidant potential and toxicity study of the cerium oxide nanoparticles synthesized by microwave-mediated synthesis. Appl. Biochem. Biotechnol. 177, 148–161 (2015)

    Google Scholar 

  36. D.V. Pinjari, A.B. Pandit, Room temperature synthesis of crystalline CeO2 nanopowder: advantage of sonochemical method over conventional method. Ultrason. Sonochem. 18, 1118–1123 (2011)

    Google Scholar 

  37. L. Yin, Y. Wang, G. Pang, Y. Koltypin, A. Gedanken, Sonochemical synthesis of cerium oxide nanoparticles—effect of additives and quantum size effect. J. Colloid Interface Sci. 246, 78–84 (2002)

    ADS  Google Scholar 

  38. S. Mutinda, Hydrothermal Synthesis of Shape/Size-Controlled Cerium-Based Oxides. PhD thesis, Youngstown State University (2013)

  39. Ö. Kepenekci, Hydrothermal preparation of single crystalline CeO2 nanoparticles and the influence of alkali hydroxides on their structure and optical behaviour. MSc thesis, İzmir Institute of Technology, Turkey (2009)

  40. T. Masui, H. Hirai, N. Imanaka, G. Adachi, T. Sakata, H. Mori, Synthesis of nanoceria by hydrothermal crystallization with citric acid. J. Mater. Sci. Lett. 21, 489–491 (2002)

    Google Scholar 

  41. T. Masui, H. Hirai, R. Hamada, N. Imanaka, G.Y. Adachi, T. Sakata, H. Mori, Synthesis and characterization of nanoceria coated with turbostratic boron nitride. J. Mater. Chem. 13, 622–627 (2003)

    Google Scholar 

  42. M. Jalilpour, M. Fathalilou, Effect of aging time and calcination temperature on the cerium oxide nanoparticles synthesis via reverse co-precipitation method. Int. J. Phys. Sci. 7, 944–948 (2012)

    Google Scholar 

  43. R.M. Epand, C. Walker, R.F. Epand, N.A. Magarvey, Molecular mechanisms of membrane targeting antibiotics. BBA Biomembr. 2016, 980–987 (1858)

    Google Scholar 

  44. A. Arumugam, C. Karthikeyan, A.S. Haja Hameed, K. Gopinath, S. Gowri, V. Karthika, Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater. Sci. Eng. C 49, 408–415 (2015)

    Google Scholar 

  45. S. Munusamy, K. Bhakyaraj, L. Vijayalakshmi, A. Stephen, V. Narayanan, Synthesis and characterization of nanoceria using Curvularia lunata and their antibacterial properties. Int. J. Innov. Res. Sci. Eng. 2, 318–323 (2014)

    Google Scholar 

  46. M. Darroudi, S.J. Hoseini, R. Kazemi Oskuee, H.A. Hosseini, L. Gholami, S. Gerayli, Food-directed synthesis of cerium oxide nanoparticles and their neurotoxicity effects. Ceram. Int. 40, 7425–7430 (2014)

    Google Scholar 

  47. J.P. Nair, E. Wachtel, I. Lubomirsky, J. Fleig, J. Maier, Anomalous expansion of CeO2 nanocrystalline membranes. Adv. Mater. (Weinheim Ger.) 15, 2077–2081 (2003)

    Google Scholar 

  48. J. Kaur, M. Singh, C. Dell‘Aversana, R. Benedetti, P. Giardina, M. Rossi, M. Valadan, A. Vergara, A. Cutarelli, A.M.I. Montone, L. Altucci, F. Corrado, A. Nebbioso, C. Altucci, Biological interactions of biocompatible and water-dispersed MoS2 nanosheets with bacteria and human cells. Sci. Rep. 8, 16386 (2018)

    ADS  Google Scholar 

  49. H. Beyzaei, M. Moghaddam-Manesh, R. Aryan, B. Ghasemi, A. Samzadeh-Kermani, Synthesis and in vitro antibacterial evaluation of 6-substituted 4-amino-pyrazolo[3,4-d]pyrimidines. Chem. Pap. 71, 1685–1691 (2017)

    Google Scholar 

  50. H. Beyzaei, Z. Motraghi, R. Aryan, M.M. Zahedi, A. Samzadeh-Kermani, Green one-pot synthesis of novel polysubstituted pyrazole derivatives as potential antimicrobial agents. Acta Chim. Slov. (2017). https://doi.org/10.17344/acsi.2017.3609

    Article  Google Scholar 

  51. H.H. Seung, Thermal reduction of graphene oxide, in Physics and Applications of Graphene—Experiments, ed. by S. Mikhailov (InTech, Rijeka, 2011), pp. 73–90

    Google Scholar 

  52. T.M. Hakami, A.M. Davarpanah, A. Rahdar, S.D. Barrett, Structural and magnetic study and cytotoxicity evaluation of tetra-metallic nanoparticles of Co0.5Ni0.5CrxFe2−xO4 prepared by co-precipitation. J. Mol. Struct. 1165, 344–348 (2018)

    ADS  Google Scholar 

  53. A. Rahdar, M. Aliahmad, Y. Azizi, N. Keikha, M. Moudi, F. Keshavarzi, CuO–NiO nano composites: synthesis, characterization, and cytotoxicity evaluation. Nanomed. Res. J. 2, 78–86 (2017)

    Google Scholar 

  54. S.M. Taimoory, A. Rahdar, M. Aliahmad, F. Sadeghfar, M.R. Hajinezhad, M. Jahantigh, P. Shahbazi, J.F. Trant, The synthesis and characterization of a magnetite nanoparticle with potent antibacterial activity and low mammalian toxicity. J. Mol. Liq. 265, 96–104 (2018)

    Google Scholar 

  55. E. Erdem, Electron beam curing of CoFe2O4 nanoparticles. Hybrid Mater. 1, 62–70 (2014)

    Google Scholar 

  56. W. Xu, W. Jin, Z. Li, H. Liang, Y. Wang, B.R. Shah, Y. Li, B. Li, Synthesis and characterization of nanoparticles based on negatively charged xanthan gum and lysozyme. Food Res. Int. 71, 83–90 (2015)

    Google Scholar 

  57. P. Arciniegas-Grijalba, M. Patiño-Portela, L. Mosquera Sánchez, J. Guerrero-Vargas, J. Paez, ZnO nanoparticles (ZnO–NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl. Nanosci. 7, 225–241 (2017)

    ADS  Google Scholar 

  58. A.M. Abdelmonem, B. Pelaz, K. Kantner, N.C. Bigall, P. del Pino, W.J. Parak, Charge and agglomeration dependent in vitro uptake and cytotoxicity of zinc oxide nanoparticles. J. Inorg. Biochem. 153, 334–338 (2015)

    Google Scholar 

  59. X. Lu, X. Li, F. Chen, C. Ni, Z. Chen, Hydrothermal synthesis of prism-like mesocrystal CeO2. J. Alloys Compd. 476, 958–962 (2009)

    Google Scholar 

  60. W. Lin, Y.-W. Huang, X.-D. Zhou, Y. Ma, Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int. J. Toxicol. 25, 451–457 (2006)

    Google Scholar 

  61. F. Abbas, T. Jan, J. Iqbal, M.S.H. Naqvi, Fe doping induced enhancement in room temperature ferromagnetism and selective cytotoxicity of CeO2 nanoparticles. Curr. Appl. Phys. 15, 1428–1434 (2015)

    ADS  Google Scholar 

  62. F. Abbas, J. Iqbal, T. Jan, M.S.H. Naqvi, A. Gul, R. Abbasi, A. Mahmood, I. Ahmad, M. Ismail, Differential cytotoxicity of ferromagnetic Co doped CeO2 nanoparticles against human neuroblastoma cancer cells. J. Alloys Compd. 648, 1060–1066 (2015)

    Google Scholar 

  63. Z. Yaghoobi, V. Sankar, N. Amini, A. Rahdar, Exploring the cytotoxicity of CeO2 nanoparticles: a compendious approach. J. Nanoanal. (2020). https://doi.org/10.22034/JNA.22020.1879379.1871160

    Article  Google Scholar 

  64. X. Fang, R. Yu, B. Li, P. Somasundaran, K. Chandran, Stresses exerted by ZnO, CeO2 and anatase TiO2 nanoparticles on the Nitrosomonas europaea. J. Colloid Interface Sci. 348, 329–334 (2010)

    ADS  Google Scholar 

  65. I.-S. Kim, M. Baek, S.-J. Choi, Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J. Nanosci. Nanotechnol. 10, 3453–3458 (2010)

    Google Scholar 

  66. Y. Kuang, X. He, Z. Zhang, Y. Li, H. Zhang, Y. Ma, Z. Wu, Z. Chai, Comparison study on the antibacterial activity of nano- or bulk-cerium oxide. J. Nanosci. Nanotechnol. 11, 4103–4108 (2011)

    Google Scholar 

  67. Y.H. Leung, M.M.N. Yung, A.M.C. Ng, A.P.Y. Ma, S.W.Y. Wong, C.M.N. Chan, Y.H. Ng, A.B. Djurišić, M. Guo, M.T. Wong, F.C.C. Leung, W.K. Chan, K.M.Y. Leung, H.K. Lee, Toxicity of CeO2 nanoparticles—the effect of nanoparticle properties. J. Photochem. Photobiol. B 145, 48–59 (2015)

    Google Scholar 

  68. T. Jan, J. Iqbal, Q. Mansoor, M. Ismail, M. Sajjad Haider Naqvi, A. Gul, S. Faizan-ul-Hassan Naqvi, F. Abbas, Synthesis, physical properties and antibacterial activity of Ce doped CuO: a novel nanomaterial. J. Phys. D Appl. Phys. 47, 355301 (2014)

    Google Scholar 

  69. E. Malka, I. Perelshtein, A. Lipovsky, Y. Shalom, L. Naparstek, N. Perkas, T. Patick, R. Lubart, Y. Nitzan, E. Banin, A. Gedanken, Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small 9, 4069–4076 (2013)

    Google Scholar 

  70. A. Ambrosone, M. Roopin, B. Pelaz, A.M. Abdelmonem, L.-M. Ackermann, L. Mattera, M. Allocca, A. Tino, M. Klapper, W.J. Parak, O. Levy, C. Tortiglione, Dissecting common and divergent molecular pathways elicited by CdSe/ZnS quantum dots in freshwater and marine sentinel invertebrates. Nanotoxicology 11, 289–303 (2017)

    Google Scholar 

  71. S.J. Soenen, B.B. Manshian, A.M. Abdelmonem, J.-M. Montenegro, S. Tan, L. Balcaen, F. Vanhaecke, A.R. Brisson, W.J. Parak, S.C. De Smedt, K. Braeckmans, The cellular interactions of PEGylated gold nanoparticles: effect of PEGylation on cellular uptake and cytotoxicity. Part. Part. Syst. Charact. 31, 794–800 (2014)

    Google Scholar 

Download references

Acknowledgments

The Authors would like to thank the University of Zabol for financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abbas Rahdar or George Z. Kyzas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahdar, A., Beyzaei, H., Askari, F. et al. Gum-based cerium oxide nanoparticles for antimicrobial assay. Appl. Phys. A 126, 324 (2020). https://doi.org/10.1007/s00339-020-03507-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03507-4

Keywords

Navigation