Skip to main content
Log in

Chemiresistive SO2 sensor: graphene oxide (GO) anchored poly(3,4-ethylenedioxythiophene):poly(4styrenesulfonate) (PEDOT:PSS)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This report deals with the synthesis of poly(3,4-ethylenedioxythiophene):poly(4styrenesulfonate)/graphene oxide (PEDOT:PSS/GO) composites by solution processing method and exploration of the same for chemiresistive-type SO2 gas sensing. The PEDOT:PSS polymer is used as a conducting layer due to high stability in air and GO due to the high surface-to-volume ratio. The PEDOT:PSS/GO was characterized by using an X-ray diffractometer, atomic force microscopy (AFM), and Raman spectroscopy. The sensor channel was fabricated by drop-casting PEDOT:PSS/GO on the sub-mm gap of copper a electrode on plastic substrate, which forms two-electrode devices as a sensor. The PEDOT:PSS/GO sensor platform manifests highly selective, sensitive, rapid, and reversible responses for the detection of 0.5–40 ppm SO2 gas. Moreover, it exhibits fast response and recovery time (81 s and 92 s), with excellent selectivity and stability at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.L. Power, R.K. Tennant, R.T. Jones, Y. Tang, J. Du, A.T. Worsley, J. Love, Monitoring impacts of urbanisation and industrialisation on air quality in the Anthropocene using urban pond sediments. Front. Earth Sci. 6, 131 (2018)

    ADS  Google Scholar 

  2. C. Zou, Q. Zhao, G. Zhang, B. Xiong, Energy revolution: From a fossil energy era to a new energy era. Natural Gas Industry B. 3, 1–11 (2016)

    Google Scholar 

  3. US EPA, Sulfur Dioxide Basics, US EPA. (2016). https://www.epa.gov/so2-pollution/sulfur-dioxide-basics (Accessed April 22, 2020).

  4. J.-T. Huang, Sulfur dioxide (SO2) emissions and government spending on environmental protection in China-Evidence from spatial econometric analysis. J. Cleaner Produc. 175, 431–441 (2018)

    Google Scholar 

  5. W. Faith W, The petroleum refining industry–air pollution problems and control methods. Informative report no 1 petroleum committee T1-3. J. Air. Poll. Control. Assoc. 14: 30 (1964).

  6. M.L. Mittal, C. Sharma, R. Singh, Estimates of emissions from coal fired thermal power plants in India, in. Int Emiss Invent Conf 2012, 13–16 (2012)

    Google Scholar 

  7. S.C. Lee, B.W. Hwang, S.J. Lee, H.Y. Choi, S.Y. Kim, S.Y. Jung, D. Ragupathy, D.D. Lee, J.C. Kim, A novel tin oxide-based recoverable thick film SO2 gas sensor promoted with magnesium and vanadium oxides. Sens Actuators B Chem 160, 1328–1334 (2011)

    Google Scholar 

  8. R.R. Khan, M.J.A. Siddiqui, Review on effects of particulates; sulfur dioxide and nitrogen dioxide on human health. Int. Res. J. Environ. Sci. 3, 70–73 (2014)

    Google Scholar 

  9. W.H. Organization, Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide, World Health Organization (2006).

  10. S. Saxena, T.A. Tyson, S. Shukla, E. Negusse, H. Chen, J. Bai, Investigation of structural and electronic properties of graphene oxide. Appl. Phys. Lett. 99, 013104 (2011)

    ADS  Google Scholar 

  11. M. Hakimi, A. Salehi, F.A. Boroumand, Fabrication and characterization of an ammonia gas sensor based on PEDOT-PSS with N-doped graphene quantum dots dopant. IEEE Sens. J. 16, 6149–6154 (2016)

    ADS  Google Scholar 

  12. A. Benoudjit, M.M. Bader, W.W.A.W. Salim, Study of electropolymerized PEDOT: PSS transducers for application as electrochemical sensors in aqueous media. Sens Bio-Sens Res. 17, 18–24 (2018)

    Google Scholar 

  13. M. Donarelli, L. Ottaviano, 2D materials for gas sensing applications: A review on graphene oxide, MoS2, WS2 and phosphorene. Sensors. 18, 3638 (2018)

    Google Scholar 

  14. P. Montes-Navajas, N.G. Asenjo, R. Santamaría, R. Menendez, A. Corma, H. García, Surface area measurement of graphene oxide in aqueous solutions. Langmuir 29, 13443–13448 (2013)

    Google Scholar 

  15. G.K. Arun, N. Sreenivas, K.B. Reddy, K.S.K. Reddy, M.S. Kumar, R. Pramod, Investigation on mechanical properties of graphene oxide reinforced GFRP, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018: p. 012158.

  16. T. Al-Gahouari, G. Bodkhe, P. Sayyad, N. Ingle, M. Mahadik, S.M. Shirsat, M. Deshmukh, N. Musahwar, M. Shirsat, Electrochemical sensor: l-cysteine induced selectivity enhancement of electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid for detection of lead (Pb2+) Ions. Front Mater 7, 68 (2020)

    ADS  Google Scholar 

  17. M. Mahadik, H. Patil, G. Bodkhe, N. Ingle, P. Sayyad, T. Al-Gahaouri, S. Shirsat, M.D. Shirsat, EDTA modified PANI/GO Composite based detection of Hg (II) ions. Front Mater 7, 81 (2020)

    ADS  Google Scholar 

  18. T.A. Ho, D.V. Papavassiliou, L.L. Lee, A. Striolo, Liquid water can slip on a hydrophilic surface. Proc. Natl. Acad. Sci. 108, 16170–16175 (2011)

    ADS  Google Scholar 

  19. H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M.S. Dresselhaus, Ultrahigh humidity sensitivity of graphene oxide. Sci Rep 3, 1–7 (2013)

    Google Scholar 

  20. S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin, A. Kulkarni, T. Kim, H. Lee, Highly sensitive and selective gas sensor using hydrophilic and hydrophobic graphenes. Sci Rep 3, 1868 (2013)

    ADS  Google Scholar 

  21. C. Liewhiran, N. Tamaekong, A. Wisitsora-at, S. Phanichphant, The monitoring of H 2 S and SO 2 noxious gases from industrial environment with sensors based on flame-spray-made SnO 2 nanoparticles. Eng J 16, 123–134 (2012)

    Google Scholar 

  22. P. Chanthaanont, A. Sirivat, Effect of transition metal ion-exchanged into the zeolite y on electrical conductivity and response of PEDOT-PSS/MY composites toward SO2, advances in polymer technology. 32 (2013).

  23. R. Kumar, D.K. Avasthi, A. Kaur, Fabrication of chemiresistive gas sensors based on multistep reduced graphene oxide for low parts per million monitoring of sulfur dioxide at room temperature. Sens Actuators B 242, 461–468 (2017)

    Google Scholar 

  24. P.A. Levermore, L. Chen, X. Wang, R. Das, D.D. Bradley, Fabrication of highly conductive poly (3, 4-ethylenedioxythiophene) films by vapor phase polymerization and their application in efficient organic light-emitting diodes. Adv. Mater. 19, 2379–2385 (2007)

    Google Scholar 

  25. Y. Xia, J. Ouyang, Significant conductivity enhancement of conductive poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) films through a treatment with organic carboxylic acids and inorganic acids. ACS Appl. Mater. Interfaces. 2, 474–483 (2010)

    Google Scholar 

  26. Y. Xia, J. Ouyang, PEDOT: PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells. J. Mater. Chem. 21, 4927–4936 (2011)

    Google Scholar 

  27. Y.H. Kim, C. Sachse, M.L. Machala, C. May, L. Müller-Meskamp, K. Leo, Highly conductive PEDOT: PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Func. Mater. 21, 1076–1081 (2011)

    Google Scholar 

  28. Y. Xia, K. Sun, J. Ouyang, Highly conductive poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells. Energy Environ. Sci. 5, 5325–5332 (2012)

    Google Scholar 

  29. P. Kumar, A. Kumar, P.-K. Shin, S. Ochiai, Influence of solvent treatment with fluoro compounds on the properties of poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) polymer as a hole transport layer in polymer solar cells. J Phot Energy. 4, 043097 (2014)

    Google Scholar 

  30. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Google Scholar 

  31. A. Hasani, H. Sharifi Dehsari, M. Asghari Lafmejani, A. Salehi, F. Afshar Taromi, K. Asadi, S.Y. Kim, Ammonia-sensing using a composite of graphene oxide and conducting polymer (Phys. Status Solidi RRL 5/2018), Physica Status Solidi (RRL)–Rapid. Res. Lett. 12 (2018) 1870317.

  32. G.-J. Liu, L.-Q. Fan, F.-D. Yu, J.-H. Wu, L. Liu, Z.-Y. Qiu, Q. Liu, Facile one-step hydrothermal synthesis of reduced graphene oxide/Co 3 O 4 composites for supercapacitors. J. Mater. Sci. 48, 8463–8470 (2013)

    ADS  Google Scholar 

  33. N. Cao, Y. Zhang, Study of reduced graphene oxide preparation by Hummers’ method and related characterization, J. Nanomater. 2015 (2015).

  34. J. Li, J. Liu, C. Gao, J. Zhang, H. Sun, Influence of MWCNTs doping on the structure and properties of PEDOT: PSS films, Int J Photoenergy. 2009 (2009).

  35. P. Kumar, E.W. Zaia, E. Yildirim, D.M. Repaka, S.-W. Yang, J.J. Urban, K. Hippalgaonkar, Polymer morphology and interfacial charge transfer dominate over energy-dependent scattering in organic-inorganic thermoelectrics. Nature Commun. 9, 1–10 (2018)

    Google Scholar 

  36. Y. Seekaew, S. Lokavee, D. Phokharatkul, A. Wisitsoraat, T. Kerdcharoen, C. Wongchoosuk, Low-cost and flexible printed graphene–PEDOT: PSS gas sensor for ammonia detection. Org. Electron. 15, 2971–2981 (2014)

    Google Scholar 

  37. M. Stavytska-Barba, A.M. Kelley, Surface-enhanced Raman study of the interaction of PEDOT: PSS with plasmonically active nanoparticles. J Phys Chem C. 114, 6822–6830 (2010)

    Google Scholar 

  38. P.C. Mahakul, K. Sa, B. Das, B. Subramaniam, S. Saha, B. Moharana, J. Raiguru, S. Dash, J. Mukherjee, P. Mahanandia, Preparation and characterization of PEDOT: PSS/reduced graphene oxide–carbon nanotubes hybrid composites for transparent electrode applications. J. Mater. Sci. 52, 5696–5707 (2017)

    ADS  Google Scholar 

  39. B. Xu, S.-A. Gopalan, A.-I. Gopalan, N. Muthuchamy, K.-P. Lee, J.-S. Lee, Y. Jiang, S.-W. Lee, S.-W. Kim, J.-S. Kim, Functional solid additive modified PEDOT: PSS as an anode buffer layer for enhanced photovoltaic performance and stability in polymer solar cells. Sci Rep. 7, 45079 (2017)

    ADS  Google Scholar 

  40. M.D. Shirsat, M.A. Bangar, M.A. Deshusses, N.V. Myung, A. Mulchandani, Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor. Appl. Phys. Lett. 94, 083502 (2009)

    ADS  Google Scholar 

  41. A. Rushi, K. Datta, P. Ghosh, A. Mulchandani, M.D. Shirsat, Iron tetraphenyl porphyrin functionalized single wall carbon nanotubes for the detection of benzene. Mater. Lett. 96, 38–41 (2013)

    Google Scholar 

  42. D. Zhang, D. Wu, X. Zong, Z. Yang, Enhanced SO 2 gas sensing properties of metal organic frameworks-derived titanium dioxide/reduced graphene oxide nanostructure. J. Mater. Sci.: Mater. Electron. 30, 11070–11078 (2019)

    Google Scholar 

  43. Q. Zhou, W. Zeng, W. Chen, L. Xu, R. Kumar, A. Umar, High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO-ZnO nanodisks. Sensors and Actuators B. 298, 126870 (2019)

    Google Scholar 

  44. C.A. Betty, S. Choudhury, S. Arora, Tin oxide–polyaniline heterostructure sensors for highly sensitive and selective detection of toxic gases at room temperature. Sens Actuators B Chem. 220, 288–294 (2015)

    Google Scholar 

  45. N. Ingle, S. Mane, P. Sayyad, G. Bodkhe, T. Al-Gahouari, M. Mahadik, S. Shirsat, M.D. Shirsat, Sulfur dioxide (SO 2) detection using composite of Nickel benzene carboxylic (Ni 3 BTC 2) and OH-functionalized single walled carbon nanotubes (OH-SWNTs). Front Mater. 7, 93 (2020)

    ADS  Google Scholar 

  46. T.-J. Hsueh, C.-L. Lu, A hybrid YSZ/SnO2/MEMS SO2 gas sensor. RSC Adv. 9, 27800–27806 (2019). https://doi.org/10.1039/C9RA03607E

    Article  Google Scholar 

  47. J.N. Gavgani, H.S. Dehsari, A. Hasani, M. Mahyari, E.K. Shalamzari, A. Salehi, F.A. Taromi, A room temperature volatile organic compound sensor with enhanced performance, fast response and recovery based on N-doped graphene quantum dots and poly (3, 4-ethylenedioxythiophene)–poly (styrenesulfonate) nanocomposite. Rsc Adv. 5, 57559–57567 (2015)

    Google Scholar 

  48. S.S. Varghese, S.H. Varghese, S. Swaminathan, K.K. Singh, V. Mittal, Two-dimensional materials for sensing: graphene and beyond. Electronics. 4, 651–687 (2015)

    Google Scholar 

  49. A.G. Bannov, J. Prášek, O. Jašek, L. Zajíčková, Investigation of pristine graphite oxide as room-temperature chemiresistive ammonia gas sensing material. Sensors. 17, 320 (2017)

    Google Scholar 

  50. A. Pasha, S. Khasim, O.A. Al-Hartomy, M. Lakshmi, K.G. Manjunatha, Highly sensitive ethylene glycol-doped PEDOT–PSS organic thin films for LPG sensing. RSC Adv. 8, 18074–18083 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors extend their sincere thanks to DST—SERB, New Delhi (Project No. EEQ/2017/000645), Rashtriya Uchchatar Shiksha Abhiyan (RUSA), Government of Maharashtra, UGC—DAE CSR (RRCAT), Indore (Project No. CSR-IC-BL66/CRS- 183/2016-17/847), Inter University Accelerator Center (IUAC), New Delhi, India (UFR no. 62320), UGC-SAP Programme (F.530/16/DRS-I/2016 (SAP-II) Dt.16-04-2016), and DST-FIST (Project No. SR/FST/PSI-210/2016(C) dtd. 16/12/2016) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra D. Shirsat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayyad, P.W., Khan, S.S., Ingle, N.N. et al. Chemiresistive SO2 sensor: graphene oxide (GO) anchored poly(3,4-ethylenedioxythiophene):poly(4styrenesulfonate) (PEDOT:PSS). Appl. Phys. A 126, 857 (2020). https://doi.org/10.1007/s00339-020-04053-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04053-9

Keywords

Navigation