Skip to main content
Log in

NO2 sensing properties of 3D flower-like ZnO nanostructure decorated with thin porous petals synthesized using a simple sol–gel drop-casting method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A three-dimensional flower-like ZnO nanostructured film decorated with the thin porous ‘petals’ is synthesized using an inexpensive sol–gel drop-casting method, and the NO2 detection characteristics of the nanostructured film are studied. The gas-sensing study shows higher sensitivity with selectivity toward NO2 gas, exhibiting good reproducibility and stability. The as-synthesized nanostructured 3D flower-like ZnO film shows excellent NO2 sensing performance, with a maximum gas response of 23.3 for 100 ppm NO2 gas at an operating temperature of 180 °C. A detailed gas-sensing study reveals that the enormous porous petals with various inter-connected pores fused on the flower-like ZnO nanostructure improve the adsorption of gas molecules; consequently, the synthesized ZnO nanostructure exhibits a superior level of NO2 gas-sensing activity. This study provides a promising path towards the development of a highly sensitive NO2 gas sensor and an easy way to fabricate the 3D morphology decorated with exceedingly porous ‘petals’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Luo, Z. Lou, L. Wang, X. Zheng, T. Zhang, Fabrication of flower-like ZnO nanosheet and nanorod-assembled hierarchical structures and their enhanced performance in gas sensors. New J. Chem. 38, 84–89 (2014)

    Article  Google Scholar 

  2. T. Lin, X. Lv, S. Li, Q. Wang, The morphologies of the semiconductor oxides and their gas-sensing properties. Sensors 17, 2779 (2017)

    Article  Google Scholar 

  3. A.K. Radzimska, T. Jesionowski, Zinc oxide—from synthesis to application: a review. Materials 7, 2833–2881 (2014)

    Article  ADS  Google Scholar 

  4. J. Qiu, B. Weng, L. Zhao, C. Chang, Z. Shi, X. Li, H.K. Kim, Y.H. Hwang, Synthesis and characterization of flower-like bundles of ZnO nanosheets by a surfactant-free hydrothermal process. J. Nanomat. 2014, 281461 (2014)

    Article  Google Scholar 

  5. H. Zhang, W.G. Chen, Y.Q. Li, L.F. Jin, F. Cui, Z.H. Song, 3D Flower-like NiO hierarchical structures assembled with size-controllable 1D blocking units: gas sensing performances towards acetylene. Front. Chem. 6, 472 (2018)

    Article  ADS  Google Scholar 

  6. S. Wei, Y. Xing, Y. Li, Y. Zhao, W. Du, M. Zhou, Preparation and gas sensing properties of flower-like WO3 hierarchical architecture. Vacuum 129, 13–19 (2016)

    Article  ADS  Google Scholar 

  7. G. Korotcenkov, The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng. R Rep. 61, 1–39 (2008)

    Article  Google Scholar 

  8. B. Weintraub, Z.Z. Zhou, Y.H. Li, Y.L. Deng, Solution synthesis of one-dimensional ZnO nanomaterials and their applications. Nanoscale 2, 1573–1587 (2010)

    Article  ADS  Google Scholar 

  9. A. Mahesh, Photovoltaic performance of ZnO nanosheets solar cell sensitized with beta-substituted porphyrin. J. Nanomat. 301873, 1–9 (2011)

    Article  Google Scholar 

  10. S.I. Inamdar, V.V. Ganbavle, K.Y. Rajpure, ZnO based visible-blind UV photodetector by spray pyrolysis. Superlattice Microstruct. 76, 253–263 (2014)

    Article  ADS  Google Scholar 

  11. V. Cauda, D. Pugliese, N. Garino, A. Sacco, S. Bianco, F. Bella, A. Lamberti, C. Gerbaldi, Multi-functional energy conversion and storage electrodes using flower-like zinc oxide nanostructures. Energy 65, 639–646 (2014)

    Article  Google Scholar 

  12. X. Wang, C.J. Summers, Z.L. Wang, Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett. 4, 423–426 (2004)

    Article  ADS  Google Scholar 

  13. D.C. Reynolds, D.C. Look, B. Jogai, Optically pumped ultraviolet lasing from ZnO. Solid State Commun. 99, 873–875 (1996)

    Article  ADS  Google Scholar 

  14. D. Bhatia, H. Sharma, R.S. Meena, V.R. Palkar, A novel ZnO piezoelectric microcantilever energy scavenger: fabrication and characterization. Sens. Biosens. Res. 9, 45–52 (2016)

    Google Scholar 

  15. P.P. Sahay, S. Tewari, S. Jha, M. Shamsuddin, Sprayed ZnO thin films for ethanol sensors. J. Mater. Sci. 40, 4791–4793 (2005)

    Article  ADS  Google Scholar 

  16. J. Wang, S. Fan, Y. Xia, C. Yang, S. Komarneni, Room-temperature gas sensors based on ZnO nanorod/Au hybrids: visible-light-modulated dual selectivity to NO2 and NH3. J. Hazard. Mater. 381, 120919 (2020)

    Article  Google Scholar 

  17. R.C. Singha, O. Singh, M.P. Singh, P. Singh Chandi, Synthesis of zinc oxide nanorods and nanoparticles by chemical route and their comparative study as ethanol sensors. Sens. Actuator B 135, 352–357 (2008)

    Article  Google Scholar 

  18. A.R. Nimbalkar, M.G. Patil, Synthesis of ZnO thin film by sol-gel spin coating technique for H2S gas sensing application. Phys. B 527, 7–15 (2017)

    Article  ADS  Google Scholar 

  19. L. Zhu, Y. Li, W. Zeng, Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Appl. Surf. Sci. 427, 281–287 (2018)

    Article  ADS  Google Scholar 

  20. M. Chen, Z. Wang, D. Han, F. Gu, G. Guo, High-sensitivity NO2 gas sensors based on flower-like and tube-like ZnO nanomaterials. Sens. Actuators B 157, 565–574 (2011)

    Article  Google Scholar 

  21. M. Benamara, J. Massoudi, H. Dahman, E. Dhahri, L.E.I. Mir, A. Ly, M. Debliquy, D. Lahem, High response to sub-ppm level of NO2 with 50%RH of ZnO sensor obtained by an auto-combustion method. J. Mater. Sci. Mater. Electron. 31, 14249–14260 (2020)

    Article  Google Scholar 

  22. V.L. Patil, S.A. Vanalakar, P.S. Patil, J.H. Kim, Fabrication of nanostructured ZnO thin films based NO2 gas sensor via SILAR technique. Sens. Actuator B 239, 1185–11193 (2017)

    Article  Google Scholar 

  23. Y.H. Navale, S.T. Navale, N.S. Ramgir, F.J. Stadler, S.K. Gupta, D.K. Aswal, V.B. Patil, Zinc oxide hierarchical nanostructures as potential NO2 sensors. Sens. Actuators B 251, 551–563 (2017)

    Article  Google Scholar 

  24. I.A. Nagornov, A.S. Mokrushin, E.P. Simonenko, N.P. Simonenko, P.Y. Gorobtsova, V.G. Sevastyanov, N.T. Kuznetsov, Zinc oxide obtained by the solvothermal method with high sensitivity and selectivity to nitrogen dioxide. Ceram. Int. 46, 7756–7766 (2020)

    Article  Google Scholar 

  25. M.A. Chougule, S. Sen, V.B. Patil, Fabrication of nanostructured ZnO thin film sensor for NO2 monitoring. Ceram. Int. 38, 2685–2692 (2012)

    Article  Google Scholar 

  26. S.K. Shaikh, V.V. Ganbavale, S.V. Mohite, U.M. Patil, K.Y. Rajpure, ZnO nanorod based highly selective visible blind ultra-violet photodetector and highly sensitive NO2 gas sensor. Superlattice Microstruct. 120, 170–186 (2018)

    Article  ADS  Google Scholar 

  27. V.L. Patil, S.S. Kumbhar, S.A. Vanalakar, N.L. Tarwal, S.S. Mali, J.H. Kim, P.S. Patil, Gas sensing properties of 3D mesoporous nanostructured ZnO thin films. New J. Chem. 42, 13573–13580 (2018)

    Article  Google Scholar 

  28. N.B. Patil, A.R. Nimbalkar, M.G. Patil, ZnO thin film prepared by a sol-gel spin coating technique for NO2 detection. Mater. Sci. Eng. B 227, 53–60 (2018)

    Article  Google Scholar 

  29. S. Wang, J. Zhang, J. Yang, X. Gao, H. Zhang, Y. Wang, Z. Zhu, Spinel ZnFe2O4 nanoparticle-decorated rod-like ZnO nanoheterostructures for enhanced gas sensing performances. RSC Adv. 5, 10048–10057 (2015)

    Article  ADS  Google Scholar 

  30. L. Wang, J. Li, Y. Wang, K. Yu, X. Tang, Y. Zhang, S. Wang, C. Wei, Construction of 1D SnO2-coated ZnO nanowire heterojunction for their improved n-butylamine sensing performances. Sci. Rep. 6, 35079 (2016)

    Article  ADS  Google Scholar 

  31. Y. Li, J. Liu, X. Huang, G. Li, Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres. Cryst. Growth Des. 7, 1350–1355 (2007)

    Article  Google Scholar 

  32. D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. Chem. 14, 3370–3377 (2004)

    Article  Google Scholar 

  33. B. Li, Y. Wang, Facile synthesis and enhanced photocatalytic performance of flower-like ZnO hierarchical microstructures. J. Phys. Chem. C 114, 890–896 (2010)

    Article  Google Scholar 

  34. S. Liu, Y. Zhang, S. Gao, T. Fei, Y. Zhang, X. Zheng, T. Zhang, An organometallic chemistry-assisted strategy for modification of zinc oxide nanoparticles by tin oxide nanoparticles: formation of nn heterojunction and boosting NO2 sensing properties. J. Colloid Interface Sci. 567, 328–338 (2020)

    Article  ADS  Google Scholar 

  35. M. Zhang, Q.L. Zhang, J. Wei, A.J. Wang, Facile synthesis of rambutan-like ZnO hierarchical hollow microspheres with highly photocatalytic activity. J. Nanomater. 2015, 242798 (2015)

    Google Scholar 

  36. L.L. Wang, H.M. Dou, Z. Lou, T. Zhang, Encapsuled nanoreactors (Au@SnO2): a new sensing material for chemical sensors. Nanoscale 5, 2686–2691 (2013)

    Article  ADS  Google Scholar 

  37. A.R. Nimbalkar, N.B. Patil, V.V. Ganbavle, S.V. Mohite, K.V. Madhale, M.G. Patil, Sol-gel derived aluminium doped zinc oxide thin films: a view of aluminium Doping effect on physicochemical and NO2 sensing properties. J. Alloy. Compd. 775, 466–473 (2019)

    Article  Google Scholar 

  38. M. Tiemann, Porous metal oxides as gas sensors. Chem. Eur. J. 13, 8376–8388 (2007)

    Article  ADS  Google Scholar 

  39. R.K. Sonker, S.R. Sabhajeet, S. Singh, B.C. Yadav, Synthesis of ZnO nanopetals and its application as NO2 gas sensor. Mater. Lett. 152, 189–191 (2015)

    Article  Google Scholar 

  40. S.S. Zahirullah, P. Immanuel, S. Pravinraj, P.F.H. Inbaraj, J.J. Prince, Synthesis and characterization of Bi doped ZnO thin films using SILAR method for ethanol sensor. Mater. Lett. 230, 1–4 (2018)

    Article  Google Scholar 

  41. N. Ramgir, R. Bhusari, N.S. Rawat, S.J. Patil, A.K. Debnath, S.C. Gadkari, K.P. Muthe, TiO2/ZnO heterostructure nanowire based NO2 sensor. Mater. Sci. Semicond. Proc. 106, 104770 (2020)

    Article  Google Scholar 

  42. I.Y. Habib, A.A. Tajuddin, H.A. Noor, C.M. Lim, A.H. Mahadi, N.T. Kumara, Enhanced carbon monoxide sensing properties of chromium-doped ZnO nanostructures. Sci. Rep. 9, 9207 (2019)

    Article  ADS  Google Scholar 

  43. D. Barreca, D. Bekermann, E. Comini, A. Devi, R.A. Fischer, A. Gasparotto, C. Maccato, C. Sada, G. Sberveglieric, E. Tondello, Urchin-like ZnO nanorod arrays for gas sensing applications. Cryst. Eng. Commun. 12, 3419–3421 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2020 Yeungnam University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amol R. Nimbalkar or Jae Cheol Shin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mane, S.M., Nimbalkar, A.R., Go, J.S. et al. NO2 sensing properties of 3D flower-like ZnO nanostructure decorated with thin porous petals synthesized using a simple sol–gel drop-casting method. Appl. Phys. A 127, 13 (2021). https://doi.org/10.1007/s00339-020-04152-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04152-7

Keywords

Navigation