Skip to main content
Log in

A novel synthesis and characterization of transparent CdS thin films for CdTe/CdS solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We demonstrate the direct synthesis of CdS thin films by spin coating method with thiol-amine co-solvents system. Annealing of the films at various temperatures has been performed in the air using simple glass protector. The XRD patterns show a strong peak along (110) plane related to cubic lattice while two weak peaks at (002) and (100) planes indicate the hexagonal symmetry for the CdS thin films. The Raman peak at 305 cm−1 also confirms the formation of crystalline CdS thin films. The FTIR study also reveals the formation of CdS thin films. The SEM images reveal the surface uniformity and homogeneity of the CdS thin films. The EDX results indicate nearly stoichiometric CdS thin films. The optical band gap of CdS thin films is ~ 2.4 eV when coated at 2000 rpm and annealed at 300 °C for 5 min. These findings indicate that synthesized CdS films are potential candidates for solution-processed CdTe/CdS solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.G. Martin, E. Keith, H. Yoshihiro, W. Wilhelm, Solar cell efficiency tables (version 45). Prog. Photovolt. 23, 1–9 (2015). https://doi.org/10.1002/pip.2573

    Article  Google Scholar 

  2. J.M. Burst, J.N. Duenow, D.S. Albin, E. Colegrove, M.O. Reese, J.A. Aguiar, C.S. Jiang, M.K. Pate, M.M. Al-Jassim, D. Kuciauskas, S. Swain, T. Ablekim, K.G. Lynn, W.K. Metzger, CdTe solar cells with open-circuit voltage breaking the 1 V barrier. Nat. Energy. 1, 16015 (2016). https://doi.org/10.1038/NENERGY.2016.15

    Article  ADS  Google Scholar 

  3. M.H. Ali, M.M.A. Moon, M.F. Rahman, Study of ultra-thin CdTe/CdS heterostructure solar cell purveying open-circuit voltage ~ 1.2 V. Mater. Res. Express 6, 095515 (2019). https://doi.org/10.1088/2053-1591/ab3089

    Article  ADS  Google Scholar 

  4. V.M. Fthenakis, H.C. Kim, E. Alsema, Emissions from photovoltaic life cycles. Environ. Sci. Technol. 42, 2168–2174 (2008). https://doi.org/10.1021/es071763q

    Article  ADS  Google Scholar 

  5. C.K. Miskin, A. Dubois-Camacho, M.O. Reese, R. Agrawal, A direct solution deposition approach to CdTe thin films. J. Mater. Chem. C 4, 9167–9171 (2016). https://doi.org/10.1039/C6TC02986H

    Article  Google Scholar 

  6. A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, L.Y. Matzui, E.L. Trukhanova, S.V. Trukhanov, Control of electromagnetic properties in substituted M-type hexagonal ferrites. J. Alloys Compd. 754, 247–256 (2018). https://doi.org/10.1016/j.jallcom.2018.04.150

    Article  Google Scholar 

  7. S.V. Trukhanov, A.V. Trukhanov, L.V. Panina, V.G. Kostishyn, V.A. Turchenko, E.L. Trukhanova, A.V. Trukhanov, T.I. Zubar, V.M. Ivanov, D.I. Tishkevich, D.A. Vinnik, S.A. Gudkova, D.S. Klygach, M.G. Vakhitov, P. Thakur, A. Thakur, Y. Yang, Temperature evolution of the structure parameters and exchange interactions in BaFe12 xInxO19. J. Magn. Magn. Mater. 466, 393–405 (2018). https://doi.org/10.1016/j.jmmm.2018.07.041

    Article  ADS  Google Scholar 

  8. J. Patel, F. Mighri, A. Ajji, D. Tiwari, T.K. Chaudhuri, Spin-coating deposition of PbS and CdS thin films for solar cell application. Appl. Phys. A 117, 1791–1799 (2014). https://doi.org/10.1007/s00339-014-8659-x

    Article  ADS  Google Scholar 

  9. K.L. Chopra, S.R. Das, Thin Films Solar Cells, vol. 424 (Springer, New York, 1983). https://doi.org/10.1007/978-1-4899-0418-8

    Book  Google Scholar 

  10. K.W. Mitchell, C. Eberspecher, J. Enmer, D. Pier, in Proceedings of 20th IEEE Photovoltaîc SPI Conference 1989, IEEE ISC, 1384 (1989)

  11. P. Rastogi, F. Palazon, M. Prato, F.D. Stasio, R. Krahne, Enhancing the performance of CdSe/CdS dot-in-rod light emitting diodes via surface ligand modification. ACS Appl. Mater. Interfaces 10, 5665–5672 (2018). https://doi.org/10.1021/acsami.7b18780

    Article  Google Scholar 

  12. W. Wondmagegn, I. Mejia, A. Salas-Villasenor, H.J. Stiegler, M.A. Quevedo-Lopez, R.J. Pieper, B.E. Gnade, CdS thin film transistor for inverter and operational amplifier circuit applications. Microelectron. Eng. 157, 64–70 (2016). https://doi.org/10.1016/j.mee.2016.02.042

    Article  Google Scholar 

  13. J.P. Enríquez, X. Mathew, Influence of the thickness on structural, optical and electrical properties of chemical bath deposited CdS thin films. Sol. Energy Mater. Sol. Cells. 76, 313–322 (2003). https://doi.org/10.1016/S0927-0248(02)00283-0

    Article  Google Scholar 

  14. H. Moualkia, S. Hariech, M.S. Aida, Structural and optical properties of CdS thin films grown by chemical bath deposition. Thin Solid Films 518, 1259–1262 (2009). https://doi.org/10.1016/j.tsf.2009.04.067

    Article  ADS  Google Scholar 

  15. N.I. Fainer, M.L. Kosinova, Y.M. Rumyantsev, E.G. Salman, F.A. Kuznetsov, Growth of PbS and CdS thin films by low-pressure chemical vapour deposition using dithiocarbamates. Thin Solid Films 280, 16–19 (1996). https://doi.org/10.1016/0040-6090(95)08188-7

    Article  ADS  Google Scholar 

  16. S. Aboul-Enein, M.H. Badawi, M. Ghali, G. Hassan, Preparation and properties of CdS thin films prepared on cold substrate as a window layer for solar cells. Renew. Energy. 14, 113–118 (1998). https://doi.org/10.1016/S0960-1481(98)00056-1

    Article  Google Scholar 

  17. D. Ellis, R.A. Berrigan, N. Maubg, S.J.C. Irvine, D.C. Hamilton, Thin films of CdTe/CdS grown by MOCVD for photovoltaics. J. Cryst. Growth 195, 718–724 (1998). https://doi.org/10.1016/S0022-0248(98)00684-8

    Article  ADS  Google Scholar 

  18. M.A. Martınez, C. Guillen, J. Herrero, Morphological and structural studies of CBD-CdS thin films by microscopy and diffraction techniques. Appl. Surf. Sci. 136, 8–16 (1998). https://doi.org/10.1016/S0169-4332(98)00331-6

    Article  ADS  Google Scholar 

  19. J.G. Vázquez-Luna, R.B. López Flores, M. Rubin-Falfán, L. Del, G. Pavón, R. Lozada-Morales, H. Juarez-Santiesteban, O. Starostenko, O. Zelaya-Angel, O. Vigil, O. Guzmán, P.D. Angel, A. González, CdSs deposited by a modified chemical-bath deposition method. J Cryst Growth 187, 380–386 (1998). https://doi.org/10.1016/S0022-0248(97)00817-8

    Article  ADS  Google Scholar 

  20. M. Khan, M.S. Khan, A. Aziz, S.A. Rahman, Z.R. Khan, Spectroscopic studies of sol-gel grown CdS nanocrystalline thin films for optoelectronic devices. Mater. Sci. Semicond. Process. 16, 1894–1898 (2013). https://doi.org/10.1016/j.mssp.2013.07.010

    Article  Google Scholar 

  21. A.A. Yadav, M.A. Barote, E.U. Masumdar, Studies on nanocrystalline cadmium sulphide (CdS) thin films deposited by spray pyrolysis. Solid State Sci. 12, 1173–1177 (2010). https://doi.org/10.1016/j.solidstatesciences.2010.04.001

    Article  ADS  Google Scholar 

  22. T. Tadokoro, S. Ohta, T. Ishiguro, Y. Ichinose, S. Kobayshi, N. Yamamoto, Growth and characterization of CdS epilayers on (100) GaAs by atomic layer epitaxy. J. Cryst. Growth. 130, 29–36 (1993). https://doi.org/10.1016/0022-0248(93)90832-H

    Article  ADS  Google Scholar 

  23. D. Boosagulla, S. Mandati, R. Allikayala, B.V. Sarada, Room temperature pulse electrodeposition of CdS thin films for application in solar cells and photoelectrochemical cells. ECS J. Solid State Sci. Technol. 7, 440–446 (2018). https://doi.org/10.1149/2.0261808jss

    Article  Google Scholar 

  24. T.I. Zubar, V.M. Fedosyuk, A.V. Trukhanov, N.N. Kovaleva, K.A. Astapovich, D.A. Vinnik, E.L. Trukhanova, A.L. Kozlovskiy, M.V. Zdorovets, A.A. Solobai, D.I. Tishkevich, S.V. Trukhanov, Control of growth mechanism of electrodeposited nanocrystalline NiFe films. J. Electrochem. Soc. 166, 173–180 (2019). https://doi.org/10.1149/2.1001904jes

    Article  Google Scholar 

  25. T. Zubar, A.V. Trukhanov, D. Vinnik, K. Astapovich, D.I. Tishkevich, E. Kaniukov, A. Kozlovskiy, M. Zdorovets, S.V. Trukhanov, The features of the growth processes and magnetic domain structure of NiFe nano-objects. J. Phys. Chem. C 123, 26957–26964 (2019). https://doi.org/10.1021/acs.jpcc.9b06997

    Article  Google Scholar 

  26. S.H. Pawar, C.H. Bhosale, L.P. Deshmukh, Electrochemical bath deposition technique: deposition of CdS thin films. Bull. Mater. Sci. 8, 419–422 (1986). https://doi.org/10.1007/BF02744155

    Article  Google Scholar 

  27. D.I. Tishkevich, S.S. Grabchikov, L.S. Tsybulskaya, V.S. Shendyukov, S.S. Perevoznikov, S.V. Trukhanov, E.L. Trukhanova, A.V. Trukhanov, D.A. Vinnik, Electrochemical deposition regimes and critical influence of organic additives on the structure of Bi films. J. Alloys Compd. 735, 1943–1948 (2018). https://doi.org/10.1016/j.jallcom.2017.11.329

    Article  Google Scholar 

  28. A.E. Alam, W.M. Cranton, I.M. Dharmadasa, Electrodeposition of CdS thin films from cadmium acetate and ammonium thiosulphate precursors. J. Mater. Sci. Mater. Electron. 30, 4580–4589 (2019). https://doi.org/10.1007/s10854-019-00750-1

    Article  Google Scholar 

  29. D.I. Tishkevich, S.S. Grabchikov, S.B. Lastovskii, S.V. Trukhanov, T.I. Zubar, D.S. Vasin, A.V. Trukhanov, Correlation of the synthesis conditions and microstructure for Bi-based electron shields production. J. Alloys Compd. 749, 1036–1042 (2018). https://doi.org/10.1016/j.jallcom.2018.03.288

    Article  Google Scholar 

  30. U.N. Roy, L.M. Kukreja, Oriented growth of CdS nanoparticulate film with constant average particle size with thickness up to ∼1 μm. J. Cryst. Growth 250, 405–408 (2003). https://doi.org/10.1016/S0022-0248(02)02410-7

    Article  ADS  Google Scholar 

  31. B.R. Sankapal, R.S. Mane, C.D. Lokhande, Deposition of CdS thin films by the successive ionic layer adsorption and reaction (SILAR) method. Mater. Res. Bull. 35, 177–184 (2000). https://doi.org/10.1016/S0025-5408(00)00210-5

    Article  Google Scholar 

  32. C.L. McCarthya, R.L. Brutchey, Solution processing of chalcogenide materials using thiol-amine “Alkahest” solvent systems. Chem. Commun. 53, 4888–4902 (2017). https://doi.org/10.1039/C7CC02226C

    Article  Google Scholar 

  33. D.H. Webber, R.L. Brutchey, Alkahest for V2VI3 chalcogenides: dissolution of nine bulk semiconductors in a diamine-dithiol solvent mixture. J. Am. Chem. Soc. 135, 15722–15725 (2013). https://doi.org/10.1021/ja4084336

    Article  Google Scholar 

  34. P.D. Antunez, D.A. Torelli, F. Yang, F.A. Rabuffetti, N.S. Lewis, R.L. Brutchey, Low temperature solution-phase deposition of SnS thin films. Chem. Mater. 26, 5444–5446 (2014). https://doi.org/10.1021/cm503124u

    Article  Google Scholar 

  35. M.A. Almessiere, Y. Slimani, H. Güngüne, A. Bayka, S.V. Trukhanov, A.V. Trukhanov, Manganese/yttrium codoped strontium nanohexaferrites: evaluation of magnetic susceptibility and Mössbauer spectra. Nanomaterials 9, 24 (2019). https://doi.org/10.3390/nano9010024

    Article  Google Scholar 

  36. M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanova, F. Esa, A. Sadaqat, K. Chaudhary, M. Zdorovets, A. Baykal, Correlation between composition and electrodynamics properties in nanocomposites based on hard/soft ferrimagnetics with strong exchange coupling. Nanomaterials 9, 202–213 (2019). https://doi.org/10.3390/nano9020202

    Article  Google Scholar 

  37. Q. Tian, G. Wang, W. Zhao, Y. Chen, Y. Yang, L. Huang, D. Pan, Versatile and low-toxic solution approach to binary, ternary, and quaternary metal sulfide thin films and its application in Cu2ZnSn(S, Se)4 solar cells. Chem. Mater. 26, 3098–3103 (2014). https://doi.org/10.1021/cm5002412

    Article  Google Scholar 

  38. M.B. Ismail, N.C. Pastor, E.P. Soler, A. Soltani, A. Othmane, A Comparative study on surface treatments in the immobilization improvement of hexahistidine-tagged protein on the indium tin oxide surface. J. Nanomed. Nanotechnol. 7, 1000372 (2016). https://doi.org/10.4172/2157-7439.1000372

    Article  Google Scholar 

  39. H.M. Gubur, R. Esen, Annealing effects on optical and crystallographic properties of CBD grown CdS films. Semicond. Sci. Technol. 18, 647–654 (2003). https://doi.org/10.1088/0268-1242/18/7/308

    Article  ADS  Google Scholar 

  40. W.J. Müller, G. Löffler, ZurKenntnis der Farbung von gefiilltemCadmiumsulfid. Angewandte Chemie (German Edition) 46, 538–539 (1933)

    Article  Google Scholar 

  41. W.O. Milligan, The color and crystal structure of precipitated cadmium sulfide. J. Phys. Chem. 38, 797–800 (1934). https://doi.org/10.1021/j150357a009

    Article  Google Scholar 

  42. H.A. Colorado, S.R. Dhage, H.T. Hahn, Thermo chemical stability of cadmium sulfide nanoparticles under intense pulsed light irradiation and high temperatures. Mater. Sci. Eng. B 176, 1161–1168 (2011). https://doi.org/10.1016/j.mseb.2011.06.003

    Article  Google Scholar 

  43. M. Shakouri-Araniaand, M. Salavati-Niasari, Synthesis and characterization of cadmium sulfide nanocrystals in the presence of a new sulfur source via a simple solvothermal method. New J. Chem. 38, 1179–1185 (2014). https://doi.org/10.1039/C3NJ00996C

    Article  Google Scholar 

  44. A. Bosio, G. Rosa, N. Romeo, Past, present and future of the thin film CdTe/CdS solar cells. Sol Energy (2018). https://doi.org/10.1016/j.solener.2018.01.018

    Article  Google Scholar 

  45. J.C. Orlianges, C. Champeaux, P. Dutheil, A. Catherinot, T.M. Mejean, Structural, electrical and optical properties of carbon-doped CdS thin films prepared by pulsed-laser deposition. Thin Solid Films 519, 7611–7614 (2011). https://doi.org/10.1016/j.tsf.2010.12.139

    Article  ADS  Google Scholar 

  46. V.B. Sanap, B.H. Pawar, Optical study of effect of cadmium sources on nanocrystalline CdS thin films. Chalcogenide Lett. 7, 227–231 (2010)

    Google Scholar 

  47. M.N. Amroun, M. Khadraoui, R. Miloua, Z. Kebbab, K. Sahraoui, Investigation on the structural, optical and electrical properties of mixed SnS2–CdS thin films. Opt. Int. J. Light Electron. Opt. 131, 152–164 (2017). https://doi.org/10.1016/j.ijleo.2016.11.005

    Article  Google Scholar 

  48. W. Park, Photoluminescence of nanocrystalline CdS thin films prepared by chemical bath deposition. Trans. Electr. Electron. Mater. 11, 170–173 (2010). https://doi.org/10.4313/TEEM.2010.11.4.170

    Article  Google Scholar 

  49. S.V. Trukhanov, A.V. Trukhanov, S.G. Stepin, H. Szymczak, C.E. Botez, Effect of the size factor on the magnetic properties of manganite La0.50Ba0.50MnO3. Phys. Solid State 50, 886–893 (2008). https://doi.org/10.1134/S1063783408050144

    Article  ADS  Google Scholar 

  50. S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, R. Szymczak, M. Baran, Thermal stability of A-site ordered PrBaMn2O6 manganites. J. Phys. Chem. Solids 67, 675–681 (2006). https://doi.org/10.1016/j.jpcs.2005.09.099

    Article  ADS  Google Scholar 

  51. G.C. Ozcan, H.M. Gubur, S. Alpdogan, B.K. Zeyrek, The investigation of the annealing temperature for CdS cauliflower-like thin films grown by using CBD. J. Mater. Sci. Mater. Electron. 27(11), 12148–12154 (2016). https://doi.org/10.1007/s10854-016-5368-6

    Article  Google Scholar 

  52. K.K. Nanda, S.N. Sahu, Study of CdS nanocrystallites by AFM and Raman scattering spectroscopy. Appl. Surf. Sci. 119, 50–54 (1997). https://doi.org/10.1016/S0169-4332(97)00177-3

    Article  ADS  Google Scholar 

  53. K.K. Nanda, S.N. Sarangi, S.N. Sahu, S.K. Deb, S.N. Behera, Raman spectroscopy of CdS nanocrystalline semiconductors. Phys. B 262, 31–39 (1999). https://doi.org/10.1016/S0921-4526(98)00474-8

    Article  ADS  Google Scholar 

  54. D.S. Chuu, C.M. Dai, W.F. Hsieh, C.T. Tsai, Raman investigations of the surface modes of the crystallites in CdS thin films grown by pulsed laser and thermal evaporation. J. Appl. Phys. 69, 8402–8404 (1991). https://doi.org/10.1063/1.347405

    Article  ADS  Google Scholar 

  55. P. Kumar, N. Saxena, R. Chandra, V. Gupta, A. Agarwal, D. Kanjilal, Nanotwinning and structural phase transition in CdS quantum dots. Nanoscale Res. Lett. 584, 1–7 (2012). https://doi.org/10.1186/1556-276X-7-584

    Article  Google Scholar 

  56. S. Rondiya, A. Rokade, B. Gabhale, S. Pandharkar, M. Chaudhari, A. Date, M. Chaudhary, H. Pathan, S. Jadkar, Effect of bath temperature on optical and morphology properties of CdS thin films grown by chemical bath deposition. Energy Procedia 110, 202–209 (2017). https://doi.org/10.1016/j.egypro.2017.03.128

    Article  Google Scholar 

  57. R.G. Solanki, P. Rajaram, Structural, optical and morphological properties of CdS nanoparticles synthesized using hydrazine hydrate as a complexing agent. Nano-Struct. Nano-Objects 12, 157–165 (2017). https://doi.org/10.1016/j.nanoso.2017.10.003

    Article  Google Scholar 

  58. K. Manikandan, C.S. Dilip, P. Mani, J.J. Prince, Deposition and characterization of CdS nano thin film with complexing agent triethanolamine. Am. J. Eng. Appl. Sci. 8, 318–327 (2015). https://doi.org/10.3844/ajeassp.2015.318.327

    Article  Google Scholar 

  59. N. Lau, T. Tsuge, K. Sudesh, Formation of new polyhydroxyalkanoate containing 3-hydroxy-4-methylvalerate monomer in Burkholderia sp. Appl. Microbiol. Biotechnol. 89, 1599–1609 (2011). https://doi.org/10.1007/s00253-011-3097-6

    Article  Google Scholar 

  60. A. León, P. Reuquen, C. Garín, R. Segura, P. Vargas, P. Zapata, P.A. Orihuela, FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl. Sci. 7, 49 (2017). https://doi.org/10.3390/app7010049

    Article  Google Scholar 

  61. H.S. Mahdi, A. Parveen, S. Agrawal, A. Azam, Microstructural and optical properties of sol gel synthesized CdS nano particles using CTAB as a surfactant. AIP Conf. Proc. 1832, 050012 (2017). https://doi.org/10.1063/1.4980245

    Article  Google Scholar 

  62. R. Sahraei, S. Shahriyar, M.H.M. Ara, A. Daneshfar, N. Shokri, Preparation of nanocrystalline CdS thin films by a new chemical bath deposition route for application in solar cells as antireflection coatings. Prog. Color Color. Coat. 3, 82–90 (2010)

    Google Scholar 

  63. I.O. Troyanchuk, S.V. Trukhanov, D.D. Khalyavin, H. Szymczak, Magnetic properties of anion deficit manganites Ln0.55Ba0.45MnO3 γ (Ln = La, Nd, Sm, Gd, γ ⩽ 0.37). J. Magn. Magn. Mater. 208, 217–220 (2000). https://doi.org/10.1016/S0304-8853(99)00529-6

    Article  ADS  Google Scholar 

  64. S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.A. Khomchenko, N.V. Pushkarev, I.O. Tyoyanchuk, A. Maignan, D. Flahaut, H. Szymczak, R. Szymczak, Influence of oxygen vacancies on the magnetic and electrical properties of La1 xSrxMnO3 x /2 manganites. Eur. Phys. J. B 42, 51–61 (2004). https://doi.org/10.1140/epjb/e2004-00357-8

    Article  ADS  Google Scholar 

  65. E.K. Abdelkader, H.A. Dads, S. Oucharrou, F. Walatta, H. Elaakib, L. Nkhaili, A. Narjis, A. Khalfi, K.E. Assail, A. Outzourhit, A facile route for synthesis of cadmium sulfide thin films. Thin Solid Films 664, 66–69 (2018). https://doi.org/10.1016/j.tsf.2018.08.034

    Article  ADS  Google Scholar 

  66. M.A. Islam, M.S. Hossain, M.M. Aliyu, P. Chelvanathan, Q. Huda, M.R. Karim, K. Sopian, N. Amin, Comparison of structural and optical properties of CdS thin films grown by CSVT, CBD and sputtering techniques. Energy Procedia 33, 203–213 (2013). https://doi.org/10.1016/j.egypro.2013.05.059

    Article  Google Scholar 

  67. F.R. Ahmad, A. Yakimov, R.J. Davis, J.H. Her, J.R. Cournoyer, N.M. Ayensu, Effect of thermal annealing on the properties of cadmium sulfide deposited via chemical bath deposition. Thin Solid Films 535, 166–170 (2013). https://doi.org/10.1016/j.tsf.2012.10.085

    Article  ADS  Google Scholar 

  68. H. El-Zahed, A. El-Korashy, M.A. Rahem, Effect of heat treatment on some of the optical parameters of Cu9Ge11Te80 films. Vacuum 68, 19–27 (2003). https://doi.org/10.1016/S0042-207X(02)00277-4

    Article  Google Scholar 

  69. P.H. Jefferson, S.A. Hatfield, T.D. Veal, P.D.C. King, C.F. McConville, Bandgap and effective mass of epitaxial cadmium oxide. Appl. Phys. Lett. 92, 022101 (2008). https://doi.org/10.1063/1.2833269

    Article  ADS  Google Scholar 

  70. A. Kuddus, M.F. Rahman, S. Ahmmed, J. Hossain, A.B.M. Ismail, Role of facile synthesized V2O5 as hole transport layer for CdS/CdTe heterojunction solar cell: validation of simulation using experimental data. Superlattices Microstruct 132, 106168 (2019). https://doi.org/10.1016/j.spmi.2019.106168

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially supported by a Grant (#BS-159, 2017) from the Ministry of Science & Technology, Govt. of Bangladesh. The authors highly appreciate Mr. Yuma Moriya, Graduate School of Science and Engineering, Saitama University, Japan for helping with the Raman measurement. The authors are also indebted to Mr. Md. Saiduzzaman, Center for Crystal Science and Technology, University of Yamanashi, Japan for his help during the XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaker Hossain or Abu Bakar Md. Ismail.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

339_2020_3331_MOESM1_ESM.docx

Supporting information contains: The variation of thickness with spin coating speed of the CdS thin films, The optical images of CdS thin films annealed at 300°C for different times, The shift of Raman peak and change of intensity with annealing temperature, The SEM images of CdS thin films without and with the Triton X-100 surfactant, The EDX spectra of CdS thin film, The transmittance spectra of CdS thin films (DOCX 528 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M., Hossain, J., Kuddus, A. et al. A novel synthesis and characterization of transparent CdS thin films for CdTe/CdS solar cells. Appl. Phys. A 126, 145 (2020). https://doi.org/10.1007/s00339-020-3331-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3331-0

Keywords

Navigation