Skip to main content
Log in

Effect of Al3+ ion-substituted Ni–Mg–Co ferrite prepared by sol–gel auto-combustion on lattice structure and magnetic properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, Al3+ ion substituted Ni–Mg–Co ferrite nano-magnetic material by sol–gel auto-combustion method. Citric acid is used as a complexing agent, and high-purity nitrate and deionized water are used as raw materials. And the effect of Al3+ ion substitution on the structure and magnetic properties of Ni–Mg–Co ferrite nanoparticles was studied. XRD analysis showed that all the samples have the characteristic peak of spinel ferrite. No impurity peaks were found, indicating that the ferrite has a single-phase structure. The average crystallite size was calculated by Debye–Scheller formula. With the increase of Al3+ ion substitution, the average crystallite size decreased from 58.3378 to 51.5249 nm. The structure of Ni–Mg–Co ferrite was characterized by FT-IR. There are two absorption bands ν1 and ν2 at 588 cm−1 and 389 cm−1, respectively, which further prove the spinel structure. The morphology of the samples was observed by SEM, and the particle size of the nanoparticles was calculated. The chemical composition of the sample was analyzed by EDS. The elements Ni, Mg, Co, Fe, Al, and O were found in the samples. By VSM analysis, it is found that Al3+ ion-substituted Ni–Mg–Co ferrite has ferromagnetic characteristics. With the increase of Al3+ ions substitution, the remanent magnetization (Mr), saturation magnetization (Ms), coercive force (Hc), anisotropy constant (K), magnetic moment (μB), and Yafet–Kittel angle (αYK) all decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.V. Williams, T. Prakash, J. Kennedy, S.V. Chong, S. Rubanov, J. Magn. Magn. Mater. 229, 460 (2018)

    Google Scholar 

  2. J. Kennedy, J. Leveneur, G.V.M. Williams, D.R.G. Mitchell, A. Markwitz, Nanotechnology 115602, 22 (2011)

    Google Scholar 

  3. Y. Wang, L.-T. Tseng, P.P. Murmu, N. Bao, J. Kennedy, M. Ionesc, J. Ding, K. Suzuki, S. Li, J. Yi, Mater. Des. 77, 121 (2017)

    Google Scholar 

  4. T. Prakash, G.V. Williams, J. Kennedy, S. Rubanov, J. Alloy Comp. 255, 667 (2016)

    Google Scholar 

  5. M.M. Eltabey, K.M. El-Shokrofy, S.A. Gharbia et al., J. Alloys Compd. 2473, 509 (2011)

    Google Scholar 

  6. K.R. Rahman, F.-U.-Z. Chowdhury, M.N.I. Khan, Result Phys. 354, 7 (2017)

    Google Scholar 

  7. Q. Lin, Y. He, J. Xu, J. Lin, Z. Guo, F. Yang, Nanomaterials 2, 750 (2018)

    Google Scholar 

  8. R.H. Kadam, A. Karim, A.B. Kadam, A.S. Gaikwad, S.E. Shirsath et al., Int. Nano. Lett. 2, 28 (2012)

    Google Scholar 

  9. D. Fritsch, Phys. Rev. B. 86, 014406 (2012)

    ADS  Google Scholar 

  10. V. Stevanovic, M. Avezac, A. Zunger, Phys. Rev. Lett. 105, 075501 (2010)

    ADS  Google Scholar 

  11. B.R. Babu, M.S.R. Prasad, K.V. Ramesh, Y. Purushotham, Mater. Chem. Phys. 585, 148 (2014)

    Google Scholar 

  12. M.P. Reddy, X. Zhou, A.Y.S. Dua, Q. Huang, A.M.A. Mohamed, Super Micro. 233, 81 (2015)

    Google Scholar 

  13. S. Singhal, S.K. Barthwal, K. Chandra, J. Magn. Magn. Mater. 233, 306 (2006)

    Google Scholar 

  14. K.P. Chae, J.-G. Lee, H.S. Kweon, Y.B. Lee, Phys. Status Solidi 1883, 201 (2004)

    Google Scholar 

  15. A.B. Gadkaria, T.J. Shindeb, P.N. Vasambekar, Mater. Chem. Phys. 505, 114 (2009)

    Google Scholar 

  16. A.T. Raghavrender, K.M. Jadhav, Indian academy of sciences. Bull. Mater. Sci. 575, 32 (2009)

    Google Scholar 

  17. I. Ahmada, T. Abbasa, M.U. Islama, A. Maqsood, Ceram. Int. 6735, 39 (2013)

    Google Scholar 

  18. J. Smit, H.P.J. Wijn, Ferrite (John Wiley, New York, 1959)

    Google Scholar 

  19. S.G. Gawas, U.B. Gawas, V.M.S. Verenkar, M.M. Kothawale, R. Pednekar, J Super Nov. Magn. 1447, 30 (2017)

    Google Scholar 

  20. N. Rezlescu, E. Rezlescu, C. Pasnicu, M.L. Craus, J. Phys. Condens. Matter. 5707, 6 (1994)

    Google Scholar 

  21. H.E. Hassan, T. Sharshar, M.M. Hessien, O.M. Hemeda, Nucl. Instrum. Methods Phys. Res. B. 72, 304 (2013)

    Google Scholar 

  22. Y. Matsuo, K. Ono, M. Ishikura, I. Sasaki, IEEE Trans. 3751, 33 (1997)

    Google Scholar 

  23. Q.M. Wei, J.B. Li, Y.J. Chen, J. Mater. Sci. 5115, 36 (2001)

    Google Scholar 

  24. X.G. Pan, A.M. Sun, Y.Q. Han, Moder. Phys. Lett. B 32, 1850321 (2018)

    ADS  Google Scholar 

  25. S. Maensiri, C. Masingboon, B. Boonchomb, S. Seraphinc, Scr. Mater. 797, 56 (2007)

    Google Scholar 

  26. S. Rana, J. Phili, B. Raj, Mate. Chem. Phys. 264, 124 (2010)

    Google Scholar 

  27. Z. Mosleh, P. Kamelin, M. Ranjbar, H. Salamati, Ceram. Int. 7279, l40 (2014)

    Google Scholar 

  28. C.K.Y. Yafet, Phys. Rev. 290, 87 (1958)

    Google Scholar 

  29. A. Ali, Ati, Zulkafli Othaman, Alireza Samavati, Fatemeh Yaghoubi Doust. J. Mol. Struct. 136, 1058 (2014)

    Google Scholar 

  30. V.S. Sawant, A.A. Bagade, S.V. Mohite, K.Y. Rajpure, Phys. B 39, 451 (2014)

    Google Scholar 

  31. S.R. Sawant, S.S. Suryavanshi, Curr. Sci. 644, 57 (1998)

    Google Scholar 

  32. Y. Köseoǧlu, F. Alan, M. Tan, Resul Yilgin and Mustafa öztürk. Ceram. Int. 3625, 38 (2012)

    Google Scholar 

  33. T. Prakash, G.V.M. Williams, J. Kennedy, S. Rubanov, J. Appl. Phys. 120, 123905 (2016)

    ADS  Google Scholar 

  34. A.A. Kadam, K.Y. Rajpure, J. Mater. Sci. 10484, 27 (2016)

    Google Scholar 

  35. J. Wang, C. Zeng, Z. Peng, Q. Chen, Phys. B 124, 349 (2004)

    Google Scholar 

  36. G. Herzer, IEEE Trans. Magn. 1397, 20 (1990)

    Google Scholar 

  37. J.M.D. Coey, Rare-earth iron permanent magnets (Oxford University Press, Oxford, 1996)

    Google Scholar 

  38. I. Sharififi, S.H. Nanostructural, J. Magn. Magn. Mater. 2397, 324 (2012)

    Google Scholar 

  39. F. GöZüak, Y. Köseoglu, A. Baykal, H.J. Kavas, Magn. Magn. Mater. 2170, 321 (2009)

    Google Scholar 

  40. S.M. Patange, S.E. Shirsath, B.G. Toksha, S.S. Jadhav, K.M. Jadhav, J. Appl. Phys. 023914, 106 (2009)

    Google Scholar 

  41. S.S. Jadhav, S.E. Shirsath, S.M. Patange, K.M. Jadhav, J. Appl. Phys. 2, 108 (2010)

    Google Scholar 

  42. S.S. Jadhav, S.E. Shirsath, S.M. Patange, J. Appl. Phys. 381, 108 (2010)

    Google Scholar 

  43. S.A. Mazen, N.I. Abu-Elsaad, J. Magn. Magn. Mater. 3366, 324 (2012)

    Google Scholar 

  44. M.M. Eltabe, K.M. El-Shokrofy, S.A. Gharbia, J. Alloy Comp. 2473, 509 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Sun.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest with other institutions (financial or non-financial, directly or indirectly related to work, in all scientific fields).

Ethical standards

The author states that the manuscript complies with the ethical rules applicable to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suo, N., Sun, A., Yu, L. et al. Effect of Al3+ ion-substituted Ni–Mg–Co ferrite prepared by sol–gel auto-combustion on lattice structure and magnetic properties. Appl. Phys. A 126, 183 (2020). https://doi.org/10.1007/s00339-020-3361-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3361-7

Keywords

Navigation