Skip to main content
Log in

Laser-induced forward transfer of graphene oxide

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Achieving excellent quality printing of graphene oxide is highly demanded in superior performance device fabrication. Laser-induced forward transfer (LIFT) is a promising method for printing low viscosity liquids, which alleviates the restrictions regarding the rheological properties and the size of the particles suspended in the printing ink. However, the investigation of GO printing is very limited, and this procedure still suffers from low quality and reproducibility. Herein, an effective approach of printing reproducible and well-defined GO droplets through LIFT was presented. Laser ablation was used to create a few microns deep cavity on the microscope glass, which led to the superhydrophilicity of the ablated surface and helped in the formation of a uniform GO film. Subsequently, droplet printing using LIFT method with the modified donor substrate and various pulse energies was investigated. Droplets with a relatively circular shape and limited debris were successfully printed. The droplet diameter grew linearly from 40 to 165 μm with the increasing pulse energy from 4 to 11 μJ. Finally, LIFT of GO with the cleaned donor substrate was studied, and the repetitive printing results showed the feasibility of reusing the modified donor substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.M. Cardoso, P.R.L. Silva, A.P. Lima, D.P. Rocha, T.C. Oliveira, T.M. Do Prado, E.L. Fava, O. Fatibello-Filho, E.M. Richter, R.A.A. Muñoz, 3D-printed graphene/polylactic acid electrode for bioanalysis: Biosensing of glucose and simultaneous determination of uric acid and nitrite in biological fluids. Sensor. Actuat. B Chem. 307, 127621 (2020)

    Article  Google Scholar 

  2. A. Kaidarova, M.A. Khan, M. Marengo, L. Swanepoel, A. Przybysz, C. Muller, A. Fahlman, U. Buttner, N.R. Geraldi, R.P. Wilson, C.M. Duarte, J. Kosel, Wearable multifunctional printed graphene sensors. npj Flex. Electr. 3, 1–10 (2019)

    Google Scholar 

  3. M. Wang, Q. Li, J. Shi, X. Cao, L. Min, X. Li, L. Zhu, Y. Lv, Z. Qin, X. Chen, K. Pan, Bio-inspired high sensitivity of moisture-mechanical go films with period-gradient structures. ACS Appl. Mater. Interfaces 71, 104578 (2020)

    Google Scholar 

  4. B. Han, Y.Y. Gao, Y.L. Zhang, Y.Q. Liu, Z.C. Ma, Q. Guo, L. Zhu, Q.D. Chen, H.B. Sun, Multi-field-coupling energy conversion for flexible manipulation of graphene-based soft robots. Nano Energy 71, 104578 (2020)

    Article  Google Scholar 

  5. X. Li, Y. Zhao, J. Yu, Q. Liu, R. Chen, H. Zhang, D. Song, J. Liu, J. Wang, Layer by layer inkjet printing reduced graphene oxide film supported nickel cobalt layered double hydroxide as a binder-free electrode for supercapacitors. Appl. Surf. Sci. 509, 144872 (2020)

    Article  Google Scholar 

  6. S. Bellani, E. Petroni, A.E. Del Rio Castillo, N. Curreli, B. Martín-García, R. Oropesa-Nuñez, M. Prato, F. Bonaccorso, Scalable production of graphene inks via wet-jet milling exfoliation for screen-printed micro-supercapacitors. Adv. Funct. Mater. 29(14), 1807569 (2019)

    Article  Google Scholar 

  7. J. Li, S. Sollami Delekta, P. Zhang, S. Yang, M.R. Lohe, X. Zhuang, X. Feng, M. Ostling, Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing. ACS Nano 11, 8249–8256 (2017)

    Article  Google Scholar 

  8. S. Sollami Delekta, K.H. Adolfsson, N. Benyahia Erdal, M. Hakkarainen, M. Ostling, J. Li, Fully inkjet printed ultrathin microsupercapacitors based on graphene electrodes and a nano-graphene oxide electrolyte. Nanoscale 11, 10172–10177 (2019)

    Article  Google Scholar 

  9. S. Naficy, R. Jalili, S.H. Aboutalebi, R.A. Gorkin Iii, K. Konstantinov, P.C. Innis, G.M. Spinks, P. Poulin, G.G. Wallace, Graphene oxide dispersions: Tuning rheology to enable fabrication. Mater. Horiz. 1, 326–331 (2014)

    Article  Google Scholar 

  10. X. Tang, H. Zhou, Z. Cai, D. Cheng, P. He, P. Xie, D. Zhang, T. Fan, Generalized 3d printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano 12, 3502–3511 (2018)

    Article  Google Scholar 

  11. Y. Liu, B. Zhang, Q. Xu, Y. Hou, S. Seyedin, S. Qin, G.G. Wallace, S. Beirne, J.M. Razal, J. Chen, Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing. Adv. Funct. Mater. 28, 1706592 (2018)

    Article  Google Scholar 

  12. Y. Bai, C.Z. Zhang, B. Chen, H. Sun, Enhanced humidity sensing of functionalized reduced graphene oxide with 4-chloro-3-sulfophenylazo groups. Sensor. Actuat. B Chem. 287, 258–266 (2019)

    Article  Google Scholar 

  13. Z. Wang, Q.E. Zhang, S. Long, Y. Luo, P. Yu, Z. Tan, J. Bai, B. Qu, Y. Yang, J. Shi, H. Zhou, Z.Y. Xiao, W. Hong, H. Bai, Three-dimensional printing of polyaniline/reduced graphene oxide composite for high-performance planar supercapacitor. ACS Appl. Mater. Interfaces 10, 10437–10444 (2018)

    Article  Google Scholar 

  14. I.H. Kim, T.H. Im, H.E. Lee, J.S. Jang, H.S. Wang, G.Y. Lee, I.D. Kim, K.J. Lee, S.O. Kim, Janus graphene liquid crystalline fiber with tunable properties enabled by ultrafast flash reduction. Small 15, 1901529 (2019)

    Article  Google Scholar 

  15. G. Lee, D.W. Jung, W. Lee, S. Nah, S. Ji, J.Y. Hwang, S.S. Lee, S. Park, S.S. Chae, J.O. Lee, Solution-processable method for producing high-quality reduced graphene oxide displaying ‘self-catalytic healing.’ Carbon 141, 774–781 (2019)

    Article  Google Scholar 

  16. X. Xuan, J.Y. Park, A miniaturized and flexible cadmium and lead ion detection sensor based on micro-patterned reduced graphene oxide/carbon nanotube/bismuth composite electrodes. Sensor. Actuat. B Chem. 255, 1220–1227 (2018)

    Article  Google Scholar 

  17. X. Xuan, H.S. Yoon, J.Y. Park, A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron. 109, 75–82 (2018)

    Article  Google Scholar 

  18. Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao, J. Rao, S. Luo, J. Wang, X. Jiang, Z. Liu, N. Liu, Y. Gao, 3d synergistical mxene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12, 3209–3216 (2018)

    Article  Google Scholar 

  19. Y. Zeng, T. Li, Y. Yao, T. Li, L. Hu, A. Marconnet, Thermally conductive reduced graphene oxide thin films for extreme temperature sensors. Adv. Funct. Mater. 29, 1901388 (2019)

    Article  Google Scholar 

  20. H.H. Shi, S. Jang, H.E. Naguib, Freestanding laser-assisted reduced graphene oxide microribbon textile electrode fabricated on a liquid surface for supercapacitors and breath sensors. ACS Appl. Mater. Interfaces 11, 27183–27191 (2019)

    Article  Google Scholar 

  21. T. Zou, B. Zhao, W. Xin, Y. Wang, B. Wang, X. Zheng, H. Xie, Z. Zhang, J. Yang, C.L. Guo, High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse. Light Sci. Appl. 9, 69 (2020)

    Article  ADS  Google Scholar 

  22. P. He, J.R. Brent, H. Ding, J. Yang, D.J. Lewis, P. O’Brien, B. Derby, Fully printed high performance humidity sensors based on two-dimensional materials. Nanoscale 10, 5599–5606 (2018)

    Article  Google Scholar 

  23. Z. Stempien, M. Khalid, M. Kozicki, M. Kozanecki, H. Varela, P. Filipczak, R. Pawlak, E. Korzeniewska, E. Sąsiadek, In-situ deposition of reduced graphene oxide layers on textile surfaces by the reactive inkjet printing technique and their use in supercapacitor applications. Synth. Met. 256, 116144 (2019)

    Article  Google Scholar 

  24. Y. Sui, A. Hess-Dunning, P. Wei, E. Pentzer, R.M. Sankaran, C.A. Zorman, Electrically conductive, reduced graphene oxide structures fabricated by inkjet printing and low temperature plasma reduction. Adv. Mater. Technol. 4, 1900834 (2019)

    Article  Google Scholar 

  25. X. Li, R. Chen, Y. Zhao, Q. Liu, J. Liu, J. Yu, J. Li, P. Liu, J. Li, J. Wang, Layer-by-layer inkjet printing go film anchored ni(oh)2 nanoflakes for high-performance supercapacitors. Chem. Eng. J. 375, 121988 (2019)

    Article  Google Scholar 

  26. P. Serra, A. Piqué, Laser-induced forward transfer: Fundamentals and applications. Adv. Mater. Technol. 4, 1800099 (2018)

    Article  Google Scholar 

  27. Q. Li, D. Grojo, A.P. Alloncle, P. Delaporte, Dynamics of double-pulse laser printing of copper microstructures. Appl. Surf. Sci. 471, 627–632 (2019)

    Article  ADS  Google Scholar 

  28. D.M. Zhigunov, A.B. Evlyukhin, A.S. Shalin, U. Zywietz, B.N. Chichkov, Femtosecond laser printing of single ge and sige nanoparticles with electric and magnetic optical resonances. ACS Photonics 5, 977–983 (2018)

    Article  Google Scholar 

  29. A.I. Kuznetsov, C. Unger, J. Koch, B.N. Chichkov, Laser-induced jet formation and droplet ejection from thin metal films. Appl. Phys. A 106(3), 479–487 (2012)

    Article  ADS  Google Scholar 

  30. P. Sopena, J.M. Fernandez-Pradas, P. Serra, Laser-induced forward transfer of low viscosity inks. Appl. Surf. Sci. 418, 530–535 (2017)

    Article  ADS  Google Scholar 

  31. D. Puerto, E. Biver, A.P. Alloncle, P. Delaporte, Single step high-speed printing of continuous silver lines by laser-induced forward transfer. Appl. Surf. Sci. 374, 183–189 (2016)

    Article  ADS  Google Scholar 

  32. C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, I. Zergioti, Laser-induced forward transfer of silver nanoparticle ink: Time-resolved imaging of the jetting dynamics and correlation with the printing quality. Microfluid. Nanofluid. 16, 493–500 (2014)

    Article  Google Scholar 

  33. R. Xiong, W. Chai, Y. Huang, Laser printing-enabled direct creation of cellular heterogeneity in lab-on-a-chip devices. Lab Chip 19, 1644–1656 (2019)

    Article  Google Scholar 

  34. X. Wang, J. Zhang, X. Mei, B. Xu, J. Miao, Laser fabrication of fully printed graphene oxide microsensor. Opt. Lasers Eng. 140, 106520 (2021)

    Article  Google Scholar 

  35. Q. Liu, B. Xu, Y. Zhang, X. Wang, X. Mei, X. Wang, Picosecond laser sintering of silver paste printed by laser induced forward transfer. Opt. Laser Technol. 135, 106712 (2021)

    Article  Google Scholar 

  36. M. Duocastella, H. Kim, P. Serra, A. Piqué, Optimization of laser printing of nanoparticle suspensions for microelectronic applications. Appl. Phys. A 106, 471–478 (2012)

    Article  ADS  Google Scholar 

  37. C. Boutopoulos, A.P. Alloncle, I. Zergioti, P. Delaporte, A time-resolved shadowgraphic study of laser transfer of silver nanoparticle ink. Appl. Surf. Sci. 278, 71–76 (2013)

    Article  ADS  Google Scholar 

  38. P. Sopena, S. Gonzalez-Torres, J.M. Fernandez-Pradas, P. Serra, Spraying dynamics in continuous wave laser printing of conductive inks. Sci. Rep. 8, 7999 (2018)

    Article  ADS  Google Scholar 

  39. A. Kalaitzis, M. Makrygianni, I. Theodorakos, A. Hatziapostolou, S. Melamed, A. Kabla, F. de la Vega, I. Zergioti, Jetting dynamics of Newtonian and non-Newtonian fluids via laser-induced forward transfer: Experimental and simulation studies. Appl. Surf. Sci. 465, 136–142 (2019)

    Article  ADS  Google Scholar 

  40. S. Papazoglou, Y.S. Raptis, S. Chatzandroulis, I. Zergioti, A study on the pulsed laser printing of liquid-phase exfoliated graphene for organic electronics. Appl. Phys. A 117, 301–306 (2014)

    Article  ADS  Google Scholar 

  41. S. Papazoglou, V. Tsouti, S. Chatzandroulis, I. Zergioti, Direct laser printing of graphene oxide for resistive chemosensors. Opt. Laser Technol. 82, 163–169 (2016)

    Article  ADS  Google Scholar 

  42. S. Papazoglou, C. Petridis, E. Kymakis, S. Kennou, Y.S. Raptis, S. Chatzandroulis, I. Zergioti, In-situ sequential laser transfer and laser reduction of graphene oxide films. Appl. Phys. Lett. 112, 183301 (2018)

    Article  ADS  Google Scholar 

  43. X. Wang, B. Xu, Y. Huang, J. Zhang, Q. Liu, Laser-induced forward transfer of silver nanoparticle ink using burst technique. Appl. Phys. A 125, 845 (2019)

    Article  ADS  Google Scholar 

  44. M. Makrygianni, I. Kalpyris, C. Boutopoulos, I. Zergioti, Laser induced forward transfer of ag nanoparticles ink deposition and characterization. Appl. Surf. Sci. 297, 40–44 (2014)

    Article  ADS  Google Scholar 

  45. K.L. Wlodarczyk, J. Schille, L. Naumann, A.A. Lopes, I. Bitharas, P. Bidare, S.D. Dondieu, P. Blair, U. Loeschner, A.J. Moore, M. Mercedes Maroto-Valer, D.P. Hand, Investigation of an interlaced laser beam scanning method for ultrashort pulse laser micromachining applications. J. Mater. Process. Technol. 285, 116807 (2020)

    Article  Google Scholar 

  46. K.L. Wlodarczyk, D.P. Hand, M.M. Maroto-Valer, Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser. Sci. Rep. 9(1), 20215 (2019)

    Article  ADS  Google Scholar 

  47. A.H.A. Lutey, L. Romoli, Pulsed laser ablation for enhanced liquid spreading. Surf. Coat. Technol. 360, 358–368 (2019)

    Article  Google Scholar 

  48. J. Eggers, Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69(3), 865–929 (1997)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51705258, 51705101), the Fundamental Research Funds for the Central Universities (HIT.NSRIF.2020043, KJQN201843) and China Postdoctoral Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingsheng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, J., Mei, X. et al. Laser-induced forward transfer of graphene oxide. Appl. Phys. A 127, 207 (2021). https://doi.org/10.1007/s00339-021-04356-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04356-5

Keywords

Navigation