Skip to main content
Log in

Evaluation of physical properties, mechanism and photocatalytic activities of potassium ferrate nanostructures as an adsorbent for MB dye under UV light

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present study aimed to investigate the effect of calcination temperature on the physical properties and photocatalytic activity potassium ferrate nanostructure as an adsorbent for organic dyes under visible light. The samples were synthesized using thermal treatment method based on the structural formula K2FeO4 at a temperature ranging from 350, 450 and 550 °C, and physical and structural properties of nanostructures were investigated using different characterization techniques. The dye was removed from aqueous solution via potassium ferrate nanostructure oxidation, and the samples were individually exposed to UV radiation. During the mechanism for MB degradation, hydroxyl radicals and photo-hole (h+) were found to contribute to the MB decay. Based on the results, the presence of H2O2 was not so effective, while H2O2 accelerated the photodegradation. Finally, the results of photocatalytic activity test using a solution of Methylene Blue reveal that the highest photocatalyst efficiency was achieved by potassium ferrate nanostructures in the absence of H2O2, which is calcined at a temperature of 350 °C and after the irradiation for 180 min, with 76.42% in the optimum concentration of 10 mg/l.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Chakraborty, O. Prakash, Environ. Earth Sci. 626, 012003 (2021)

    Google Scholar 

  2. V.K. Sharma, R. Zboril, R.S. Varma, Acc. Chem. Res. 48, 182 (2015)

    Google Scholar 

  3. N.T.M. Tam, Y. Liu, H. Bashir, Z. Yin, Y. He, X. Zhou, Int. J. Environ. Res. Public Health. 17, 291 (2020)

    Google Scholar 

  4. M.C. Arias, C. Aguilar, M. Piza, E. Zarazua, F. Anguebes, F. Anguebes, V. Cordova, MRC. 10, 1 (2021)

    Google Scholar 

  5. H. Momtazpour, S. Jorfi, T. Tabatabaie, A.A. Pazira, Water Sci. Technol. 79, 1263 (2019)

    Google Scholar 

  6. P. Ebrahimi, A. Kumar, Int. J. Environ. Sci. Dev. 12, 23 (2021)

    Google Scholar 

  7. J.J. Samuel, F.K. Yam, Mater Res. Express. 7, 015051 (2020)

    ADS  Google Scholar 

  8. L. Van Tan, H.T.T. Nguyen, Mater. Sci. Eng. 1091, 012034 (2021)

    Google Scholar 

  9. C. Karthikeyan, P. Arunachalam, K. Ramachandran, A.M. Al-Mayouf, S. Karuppuchamy, J. Alloys Compd. 828, 154281 (2020)

    Google Scholar 

  10. L. Xu, F. Fu, J. Environ. Sci. Health A. 55, 528 (2020)

    Google Scholar 

  11. N. Liu, Y. Liu, X. Tan, M. Li, S. Liu, X. Hu, J. Wen, Sci. Total Environ. 715, 136723 (2020)

    ADS  Google Scholar 

  12. Y. Ma, N. Gao, C. Li, Environ. Eng. Sci. 29, 357 (2012)

    Google Scholar 

  13. B.Y. Chen, H.W. Kuo, V.K. Sharma, W. Den, Sci. Rep. 9, 1 (2019)

    Google Scholar 

  14. H. Olvera-Vargas, T. Cocerva, N. Oturan, D. Buisson, M.A. Oturan, J Hazard Mater. 319, 13 (2016)

    Google Scholar 

  15. N. Wang, N. Wang, L. Tan, R. Zhang, Q. Zhao, H. Wang, Sci. Total Environ. 726, 138541 (2020)

    ADS  Google Scholar 

  16. B. Lei, G. Zhou, T. Cheng, J. Du, Asian J. Chem. 25, 27 (2013)

    Google Scholar 

  17. V. Kozik, K. Barbusinski, M. Thomas, A. Sroda, J. Jampilek, A. Sochanik, A. Bak, Materials 12, 3784 (2019)

    ADS  Google Scholar 

  18. S. Zhang, M. Jian, Q. Zhang, R. Xu, J. Qu, X. Luo, X. Li, J. Hu, R. Liu, X. Zhang, A.C.S. Sustain, Chem. Eng. 8, 8681 (2020)

    Google Scholar 

  19. I. M. Ramírez-Sánchez, E. R. Bandala (ACS Publications, 2016), p. 145

  20. M. Diaz, M. Cataldo, P. Ledezma, J. Keller, K. Doederer, J. Electroanal. Chem. 854, 113501 (2019)

    Google Scholar 

  21. Z. Anajafia, M. Naseri, G. Neri, Sens. Actuators B Chem. 304, 127252 (2020)

    Google Scholar 

  22. H.L. Wang, S.Q. Liu, X.Y. Zhang, J. Hazard. Mater. 169, 448 (2009)

    Google Scholar 

  23. S. Wang, Z. Yang, D. Liu, S. Wang, Electrochim. Acta. 55, 1985 (2010)

    Google Scholar 

  24. Y.L. Wang, S.H. Ye, Y.Y. Wang, J.S. Cao, F. Wu, Electrochim. Acta 54, 4131 (2009)

    Google Scholar 

  25. Y.L. Wei, Y.S. Wang, C.H. Liu, Metals 5, 1770 (2015)

    Google Scholar 

  26. L. Machala, R. Zboril, V.K. Sharma, J. Filip, O. Schneeweiss, Z. Homonnay, J. Phys. Chem. B. 111, 4280 (2007)

    Google Scholar 

  27. M.G. Naseri, M.H.M. Ara, E.B. Saion, A.H. Shaari, J. Magn. Magn. Mater. 350, 141 (2014)

    ADS  Google Scholar 

  28. M.G. Naseri, R. Ghasemi, J. Magn. Magn. Mater. 406, 200 (2016)

    ADS  Google Scholar 

  29. M.G. Naseri, J. Magn. Magn. Mater. 392, 107 (2015)

    ADS  Google Scholar 

  30. S. Kazemifard, H. Nayebzadeh, N. Saghatoleslami, E. Safakish, Environ. Sci. Pollut. Res. 25, 32811 (2018)

    Google Scholar 

  31. M. Naseri, E. Naderi, A.R. Sadrolhosseini, Fibers Polym. 17, 1667 (2016)

    Google Scholar 

  32. Z. Xu, J. Wang, H. Shao, Z. Tang, J. Zhang, Electrochem. Commun. 9, 371 (2007)

    Google Scholar 

  33. L. Khanna, N.K. Verma, Mater. Sci. Eng. 178, 1230 (2013)

    Google Scholar 

  34. M. Naseri, E.B. Saion, S. Setayeshi, Fibers Polym. 13, 831 (2012)

    Google Scholar 

  35. M. Chireh, M. Naseri, Adv Powder Technol. 30, 952 (2019)

    Google Scholar 

  36. A.R. Sadrolhosseini, P.M. Nia, M. Naseri, A. Mohammadi, Y.W. Fen, S. Shafie, H.M. Kamari, Appl. Sci. 10, 2855 (2020)

    Google Scholar 

  37. T. Yang, L. Wang, Y. Liu, J. Jiang, Z. Huang, S.Y. Pang, J. Ma. Environ. Sci. Technol. 52, 13325 (2018)

    ADS  Google Scholar 

  38. M. Naseri, A. Dehzangi, H.M. Kamari, A. See, M. Abedi, R. Salasi, B.Y. Majlis, Metals. 6, 181 (2016)

    Google Scholar 

  39. M.G. Naseri, E.B. Saion, H.A. Ahangar, M. Hashim, A.H. Shaari, Powder Technol. 212, 80 (2011)

    Google Scholar 

  40. M.G. Naseri, M.K. Halimah, A. Dehzangi, A. Kamalianfar, E.B. Saion, B.Y. Majlis, J Phys Chem Solids. 75, 315 (2014)

    ADS  Google Scholar 

  41. M.G. Naseri, H.M. Kamari, A. Dehzangi, A. Kamalianfar, E.B. Saion, J. Magn. Magn. Mater. 389, 113 (2015)

    ADS  Google Scholar 

  42. P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 9, 6814 (2018)

    Google Scholar 

  43. M. Singh, M. Goyal, K. Devlal, J. Tacah. Univ. Sci. 12, 470 (2018)

    Google Scholar 

  44. L. Machala, P. Zajíček, J. Kolařík, T. Mackuľak, J. Filip, 1nd edn (Springer, International Publishing, 2020), pp. 177–201

  45. A. Sadeghzadeh-Attar, Sol. Energy Mater Sol. Cells. 183, 16 (2018)

    Google Scholar 

  46. W.L. Kebede, D.H. Kuo, M.A. Zeleke, K.E. Ahmed, J. Alloys Compd. 797, 986 (2019)

    Google Scholar 

  47. K. Manoli, M. Ghosh, G. Nakhla, A.K. Ray, Adv. (Welly, New York, 2017), pp. 331–390

  48. M. Chireh, M. Naseri, S.H. Ghiasvand, J. Photochem. Photobiol. A. 385, 112063 (2019)

    Google Scholar 

  49. L.R. Yadav, K. Lingaraju, K. Manjunath, G.K. Raghu, K.S. Kumar, G. Nagaraju, Mater. Res. Express. 4, 025028 (2017)

    ADS  Google Scholar 

  50. R. Shwetharani, H.R. Chandan, M. Sakar, G.R. Balakrishna, K.R. Reddy, A.V. Raghu, Int. J. Hydrog. Energy 45, 18289 (2020)

    Google Scholar 

  51. M. Naseri, A. Kamalianfar, E. Naderi, A. Hashemi, J. Mol. Struct. 1206, 127706 (2020)

    Google Scholar 

  52. B. Palanivel, M. Lallimathi, B. Arjunkumar, M. Shkir, T. Alshahrani, K.S.A. Namshah, G. Ramalingam, J. Environ. Chem. Eng. 9, 104698 (2021)

    Google Scholar 

  53. S.M. Rahimi, F.S. Arghavan, A. Othmani, N. Nasseh, Int. J. Environ. Anal. Chem. (2020). https://doi.org/10.1080/03067319.2020.1817420

    Article  Google Scholar 

  54. R. K. Sharma, B. Arora, S. Dutta, & M. B. Gawande, 1nd edn (Speringer, 2020), pp. 221–255

Download references

Acknowledgements

This work was supported by the Ministry of science research and technology of Iran under the FRGS grant, Malayer University of Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Naseri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, A., Naseri, M. & Chireh, M. Evaluation of physical properties, mechanism and photocatalytic activities of potassium ferrate nanostructures as an adsorbent for MB dye under UV light. Appl. Phys. A 127, 743 (2021). https://doi.org/10.1007/s00339-021-04895-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04895-x

Keywords

Navigation