Skip to main content
Log in

Application and removal mechanism of ZnO/bentonite desulfurizer in the dry desulfurization

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Dry desulfurization technology is one of the important means of flue gas desulfurization and SO2 control. In this paper, a series of desulfurizers with zinc oxide as the active component and bentonite as the carrier were prepared by the sol–gel method. The performance of the desulfurizers under different preparation process conditions were studied, and they were characterized by ICP, XRD, FTIR, BET and SEM. The result showed that active component loading, molar ratio to citric acid, calcination time and calcination temperature were all important factors that affected the efficiency of the desulfurizers. The desulfurizer prepared by the sol–gel method had a loading amount close to the theory, and the active components were uniformly loaded on the carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Zhang, Y. Jia, H. Shu, L. Zhang, X. Lu, F. Bai, Q. Zhao, D. Tian, J. Clean. Prod. 305, 126800 (2021). https://doi.org/10.1016/j.jclepro.2021.126800

    Article  Google Scholar 

  2. L. Zhang, H. Shu, Y. Jia, Z. Lei, F. Bai, W. Kuang, L. Qi, J. Shang, W. Chao, Chemosphere 270, 128646 (2021). https://doi.org/10.1016/j.chemosphere.2020.128646

    Article  ADS  Google Scholar 

  3. L. Zhang, H. Shu, Y. Jia, L. Zhang, D. Xu, Int. J Hydrogen Energ. 45, 19280–19290 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.075

    Article  Google Scholar 

  4. Q. Yuan, S. Laura, T. Arnold, B. Paul, Energy Policy 147, 111856 (2020). https://doi.org/10.1016/j.enpol.2020.111856

    Article  Google Scholar 

  5. B. Jiacheng, X. Helu, L. Kai, W. Chi, S. Xin, S. Xin, N. Ping, L. Yansu, Can. J. Chem. Eng. 99(6), 1334–1344 (2021). https://doi.org/10.1002/cjce.23925

    Article  Google Scholar 

  6. W. Hao, W. Jia, B. Guozhu, W. Shuangrong, L. Litiao, J Clean. Prod. 273, 123019 (2020). https://doi.org/10.1016/j.jclepro.2020.123019

    Article  Google Scholar 

  7. H. Zhao, Y. Li, Q. Song, S. Liu, L. Ma, X. Shu, Fuel 286, 119398 (2021). https://doi.org/10.1016/j.fuel.2020.119398

    Article  Google Scholar 

  8. D. Jinxiao, Z. Yongqi, D. Xiaoxu, C. Hongning, L. Lichun, Y. Jianglong, ACS Omega 5, 19194–19201 (2020). https://doi.org/10.1021/acsomega.0c02624

    Article  Google Scholar 

  9. W. Jia, Y. Zhinian, W. Hao, W. Shuangrong, L. Huan, W. Xingguo, Sci. Total Environ. 758, 143670 (2021). https://doi.org/10.1016/j.scitotenv.2020.143670

    Article  Google Scholar 

  10. Y. Fuxin, L. Hexin, F. Peng, L. Zhenghong, T. Houzhang, Energ. Fuel. 34, 16423–16432 (2020). https://doi.org/10.1021/acs.energyfuels.0c03222

    Article  Google Scholar 

  11. W. Bobo, B. Xiaoxuan, L. Wei, L. Shumin, L. Shuhan, L. Lining, G. Zhihui, Z. Shuang, L. Yunqian, Z. Chuanyong, H. Yan, L. Yang, H. Jiming, D. Lei, T. Hezhong, Environ. Sci. Technol. 54, 6540–6550 (2020). https://doi.org/10.1021/acs.est.0c00297

    Article  Google Scholar 

  12. W. Hao, Z. Lei, T. Yang, J. Yang, B. Guozhu, L. Litao, L. Lin, S. Guoyuan, L. Fuping, Chemosphere 264, 128456 (2021). https://doi.org/10.1016/j.chemosphere.2020.128456

    Article  ADS  Google Scholar 

  13. W. Kanghui, Y. Liu, L. Junzhuang, S. Zhongyi, H. Qing, W. Kai, Fuel 278, 118206 (2020). https://doi.org/10.1016/j.fuel.2020.118206

    Article  Google Scholar 

  14. W. Hao, Q. Bingxu, B. Guozhu, Z. Yaozong, L. Lu, Z. Jiansong, Z. Xinyuan, Z. Chunhui, J Clean. Prod. 267, 122258 (2020). https://doi.org/10.1016/j.jclepro.2020.122258

    Article  Google Scholar 

  15. Z. Yang, W. Tao, Y. Hairui, Z. Hai, Z. Xuyi, J. Chinese, Chem. Eng. 23, 241–246 (2015). https://doi.org/10.1016/j.cjche.2014.10.007

    Article  Google Scholar 

  16. A. Moslem, A. Mansoor, R. Marzie, Ind. Eng. Chem. Res. 59, 21642–21653 (2020). https://doi.org/10.1021/acs.iecr.0c05629

    Article  Google Scholar 

  17. S. Qiang, Z. HongYu, J. Jinwei, Y. Li, L. Wen, G. Qiuxiang, S. Xinqian, J. Anal. Appl. Pyrol. 145, 104716 (2020). https://doi.org/10.1016/j.jaap.2019.104716

    Article  Google Scholar 

  18. C. Wan, Z. Weijun, ACS Omega 5, 30740–30745 (2020). https://doi.org/10.1021/acsomega.0c04967

    Article  Google Scholar 

  19. S.A. Mohammad, W. Xiaoxing, L.G. Jennifer, D.K. Sean, G.B. Sven, S. Chunshan, J. Catal. 391, 260–272 (2020). https://doi.org/10.1016/j.jcat.2020.08.013

    Article  Google Scholar 

  20. S. Qiang, Z. Hongyu, C. Shengqiang, Y. Li, Z. Fang, S. Xinqian, Z. Peng, J. Anal. Appl. Pyrol. 151, 104927 (2020). https://doi.org/10.1016/j.jaap.2020.104927

    Article  Google Scholar 

  21. Z. Ouyang, Y.F. Chen, S.Y. Tian, L. Xiao, C.B. Tang, Y.J. Hu, Z.M. Xia, Y.M. Chen, L.G. Ye, J. Min. Metall. B 54(3), 411–418 (2018). https://doi.org/10.2298/JMMB180510031O

    Article  Google Scholar 

  22. S. Rongli, Z. Yuzhu, S. Jun, Y. Chunliang, Z. Kai, J. Alloy. Compd. 777, 506–513 (2019). https://doi.org/10.1016/j.jallcom.2018.10.407

    Article  Google Scholar 

  23. L. Si, L. Jue, W. Zili, J. Phys. Chem. C 123, 11772–11780 (2019). https://doi.org/10.1021/acs.jpcc.9b02155

    Article  Google Scholar 

  24. K. Elaheh, A. Soheil, J. Solid State Chem. 256, 141–150 (2017). https://doi.org/10.1016/j.jssc.2017.08.038

    Article  Google Scholar 

  25. H. Zhao, Q. Song, S. Liu, Y. Li, X. Wang, X. Shu, Energ. Convers. Manag. 161, 13–26 (2018). https://doi.org/10.1016/j.enconman.2018.01.083

    Article  Google Scholar 

  26. S. Cui, F. Niu, N.J. Wang, J.M. Zhou, J.P. Wang, J.S. Li, Fuel 277, 118051 (2020). https://doi.org/10.1016/j.fuel.2020.118051

    Article  Google Scholar 

  27. Y. Chao, W. Jian, F. Huiling, H. Yongfeng, S. Jiasheng, S. Ju, W. Baojun, Energ. Fuel. 32(5), 6064–6072 (2018). https://doi.org/10.1021/acs.energyfuels.8b00532

    Article  Google Scholar 

  28. J. Baseri, R. Naghizadeh, H.R. Rezaie, F. Golestanifard, M. Golmohammad, Int. J. Appl. Ceram. Technol. 17(6), 2709–2715 (2020). https://doi.org/10.1111/ijac.13598

    Article  Google Scholar 

  29. U. Fatma, K. Faruk, Ceram. Int. 46, 26800–26808 (2020). https://doi.org/10.1016/j.ceramint.2020.07.155

    Article  Google Scholar 

  30. Roberta, Y.N. Reis, Aline, E.B. Lima, Maria, J.S. Costa, João, F. Cruz-Filho, João, P.C. Moura, Reginaldo, S. Santos, Geraldo, E. Luz Jr., Surf. Interfaces 21, 100675 (2020). https://doi.org/10.1016/j.surfin.2020.100675

  31. A. Shakiaz, S. Xintai, Y. Chao, W. Xinyu, L. Xuemin, W. Jide, J. Hazard. Mater. 371, 213–223 (2019). https://doi.org/10.1016/j.jhazmat.2019.02.111

    Article  Google Scholar 

  32. Zhao, S., Yong-Gui, C., Xiang, M., Dong-Bei, W., Wei-Min, Ye., Mater. Chem. Phys. 274, 125176 (2021). https://doi.org/10.1016/j.matchemphys.2021.125176

  33. Liu, Z., Md. Azhar U., Sun, Z., Spectrochimica. Acta A 79, 1013–1016 (2011). https://doi.org/10.1016/j.saa.2011.04.013

  34. Z. Yunyan, C. Yuming, S. Zhihua, D. Rui, S. Lei, C. Hui, Powder Technol. 391, 532–543 (2021). https://doi.org/10.1016/j.powtec.2021.06.050

    Article  Google Scholar 

  35. Bilge, E., A. Safa O¨., Adnan, O¨., Surf. Interface Anal. 42, 1351–1356 (2010). https://doi.org/10.1002/sia.3230

  36. B. Benguella, A. Yacouta-Nour, Desalination 235, 276–292 (2009). https://doi.org/10.1016/j.desal.2008.01.016

    Article  Google Scholar 

  37. Yii, Shiuan C., Pek, Ing A., Nabisab, Mujawar M., Mohammad, K., Priyanka, J., Rashmi, W., Ezzat, Chan A., Environ. Sci. Pollut. R. 26, 33270–33296 (2020). https://doi.org/10.1007/s11356-020-09423-7

  38. Elkhalifah, Ali E.I., Azmi Bustamb, M., Shariff, A.M., Murugesan,T., Appl. Clay Sci. 107, 213–219 (2015). http://dx.doi.org/https://doi.org/10.1016/j.clay.2015.01.030

  39. B. Estefanía, C. Leonardo, S. Karim, A. Vera, Environ. Technol. (2021). https://doi.org/10.1080/09593330.2021.1934559

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Key Research and Development Program of Shaanxi [Grant Number 2019ZDLSF05-05-01]; Natural Science Basic Research Program of Shaanxi [Grant Number 2019JL-01]; Xi'an Science and Technology Plan Project [Grant Number 2019217714GXRC013CG014-GXYD13.4]; Open Fund of Shaanxi Key Laboratory of Geological Support for Coal Green Exploitation [Grant Number DZBZ2020-03]; and Xi’an University of Science and Technology, State Key Laboratory of Coal Resources in Western China [Grant Number SKLCRKF20-15].

Author information

Authors and Affiliations

Authors

Contributions

ZL(F) and LZ involved in conceptualization; XW involved in methodology; YY contributed to Software; LX and SQ participated in validation; SS investigated the study; SH involved in data curation; JY participated in writing—original draft preparation; JY and SS involved in writing—review & editing.

Corresponding author

Correspondence to Zhang Lei.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Z., Yang, J., Weiwei, X. et al. Application and removal mechanism of ZnO/bentonite desulfurizer in the dry desulfurization. Appl. Phys. A 128, 146 (2022). https://doi.org/10.1007/s00339-021-05221-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05221-1

Keywords

Navigation