Skip to main content
Log in

Optical, structural, and electrical properties of modified indium-tin-oxide (ITO) films on glass surface by low energy ion implantation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Indium-tin-oxide (ITO) is a degenerate, wide bandgap semiconductor, and is very useful as transparent electrode for flat panel display devices, solar cells, sensors, and organic light emitting diodes (OLED) because of its high optical transmittance and low resistivity. In this article, the optical, structural, and electrical properties of ITO thin films on glass surface are modified with 1 keV Ar+ ion implantation by varying ion doses and energies in the range 0.5–2.5 keV, at constant ion dose of 2 min. The optical transmission is improved with increasing ion doses and is enhanced up to 90% and 92% for larger ion doses at the wavelength 380 nm and 610 nm, respectively. The optical bandgap of ion implanted ITO films could be tailored in terms of ion doses and ion energies. The structural properties as investigated by X-ray diffraction (XRD) patterns indicate the modification of average crystalline size, which increases the average dislocation and strain in the lattice. The ion beam sputters the elements (Sn, In) in ITO films and decreases the Sn and In concentration as confirmed by X-ray photoelectron spectroscopy (XPS) study. The electrical properties of ion implanted ITO films could be tuned in terms of resistivity, mobility, and carrier concentration. The decrease of Sn concentration in ITO films is mainly responsible for the modification of electrical properties. The theoretical simulation of ion induced damage in ITO films using TRIM is employed to support experimental observations. The potential application of modified ITO films on optoelectronic devices is also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Han, J.W. Mayer, T.L. Alford, J. Appl. Phys. 100, 083715 (2006)

    Article  ADS  Google Scholar 

  2. T.E. Haynes, Y. Shigesato, I. Yasui, N. Taga, H. Odaka, Nucl. Instrum. Meth. Phys. Res. B 121, 221–225 (1997)

    Article  ADS  Google Scholar 

  3. V. Gokulakrishnan, S. Parthibana, E. Elangovan, K. Ramamurthi, K. Jeganathan, D. Kanjilal, K. Asokan, R. Martins, E. Fortunato, Nucl. Instrum. Meth. Phys. Res. B 269, 1836–1840 (2011)

    Article  ADS  Google Scholar 

  4. D. Bhowmik, P. Karmakar, D. Lavanyakumar, V. Naik, B. Satpati, App. Surf. Sci. 422, 11–16 (2017)

    Article  ADS  Google Scholar 

  5. O. Oluwaleyea, M. Madhuku, B. Mwakikunga, S.J. Moloi, Nucl. Instrum. Meth. Phys. Res. B 450, 267–273 (2019)

    Article  ADS  Google Scholar 

  6. J.W. Wang, F.F. Luo, G.X. Ouyang, Y. Shib, Nucl. Instrum. Meth. Phys. Res. B 450, 234–238 (2019)

    Article  ADS  Google Scholar 

  7. D. Bhowmik, P. Karmakar, Surf. Coat. Technol. 385, 125369 (2020)

    Article  Google Scholar 

  8. S. Chatterjee, S. Bhattacharjee, S.K. Maurya, V. Srinivasan, K. Khare, S. Khandekar, Euro. Phys. Lett. 118, 68006 (2017)

    Article  ADS  Google Scholar 

  9. H.L. Hartnagel, A.L. Dawar, A.K. Jain, I.O.P.C. Jagadish, Semiconducting Transparent Thin Films (CRC Press, Philadelphia, 1995)

    Google Scholar 

  10. M. Thirumoorthi, J.T.J. Prakash, J. Asian Ceram. Soc. 4, 124–132 (2016)

    Article  Google Scholar 

  11. Z. Yu, I.R. Perera, T. Daeneke, S. Makuta, Y. Tachibana, J.J. Jasieniak, A. Mishra, P. Bäuerle, L. Spiccia, U. Bach, NPG Asia Mater. 8, e305 (2016)

    Article  Google Scholar 

  12. C.G. Granqvist, A. Hultåker, Thin Solid Films 411, 1–5 (2002)

    Article  ADS  Google Scholar 

  13. H. Zhu, H. Zhang, T.-H. Zhang, S.-J. Yu, P.-C. Guo, Y.-X. Wang, Z.-S. Yang, Ceram. Int. 47, 16980–16985 (2021)

    Article  Google Scholar 

  14. H. Zhang, H. Zhu, T.-H. Zhang, S.-J. Yu, P.-C. Guo, Y.-X. Wang, Z.-S. Yang, Appl. Surf. Sci. 559, 149968 (2021)

    Article  Google Scholar 

  15. J. Philip, N. Theodoropoulou, G. Berera, J.S. Moodera, Appl. Phys. Lett. 84, 777–779 (2004)

    Article  ADS  Google Scholar 

  16. J.C.C. Fan, J.B. Goodenough, J. Appl. Phys. 48, 3524 (1977)

    Article  ADS  Google Scholar 

  17. S. Bhagwat, R.P. Howson, Surf. Coat. Technol. 111, 163 (1999)

    Article  Google Scholar 

  18. L.-J. Meng, R.A.S.J. Gao, S. Song, Thin Solid Films 516, 5454–5459 (2008)

    Article  ADS  Google Scholar 

  19. Y.J. Kim, S.B. Jin, S.I. Kim, Y.S. Choi, I.S. Choi, J.G. Han, Thin Solid Films 518, 6241–6244 (2010)

    Article  ADS  Google Scholar 

  20. C.-L. Tien, K.-C. Yu, T.-Y. Tsai, M.-C. Liu, Appl. Surf. Sci. 354, 79–84 (2015)

    Article  ADS  Google Scholar 

  21. D. Kim, J. Non-Cryst, Solids 331, 41–47 (2003)

    Google Scholar 

  22. F. Liang, C. Liu, J. Jiao, S. Li, J. Xia, M.A. Jingbohu, Microchim. Acta 177, 389–395 (2012)

    Article  Google Scholar 

  23. C.-L. Tien, H.-Y. Lin, C.-K. Chang, C.-J. Tang, Adv. Condens. Matter Phys. 2018, 1–6 (2018)

    Google Scholar 

  24. B. Yosvichit, M. Horprathum, P. Eiamchai, V. Patthanasettakul, B. Samransuksamer, P. Chindaudom, S. Denchitcharoen, Adv. Mater. Res. 979, 263–266 (2014)

    Article  Google Scholar 

  25. M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, J. Stollenwerk, Thin Solid Films 326, 72–77 (1998)

    Article  ADS  Google Scholar 

  26. A. Salehi, Thin Solid Films 324, 214–218 (1998)

    Article  ADS  Google Scholar 

  27. L.-J. Meng, M.P.D. Santos, Thin Solid Films 289, 65–69 (1996)

    Article  ADS  Google Scholar 

  28. K. Zhang, F. Zhu, C.H.A. Huan, A.T.S. Wee, J. Appl. Phys. 86, 974–980 (1999)

    Article  ADS  Google Scholar 

  29. K.R. Narasimha, Indian J. Pure Appl. Phys. 42, 201–204 (2004)

    Google Scholar 

  30. H. Kim, C.M. Gilmore, A. Piqu´e, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey, J. Appl. Phys. 86, 6451–6461 (1999)

    Article  ADS  Google Scholar 

  31. D. Bhowmik, D. Chowdhury, P. Karmakar, Surf. Sci. 679, 86–92 (2019)

    Article  ADS  Google Scholar 

  32. D. Bhowmik, S. Bhattacharjee, Physica B: Physics of Condensed Matter 623, 413377 (2021)

    Article  Google Scholar 

  33. D. Bhowmik, J. Mukherjee, P. Karmakar, Radiat. Phys. Chem. 187, 109568 (2021)

    Article  Google Scholar 

  34. K.P. Singh, J. Majumdar, S. Bhattacharjee, Appl. Opt. 59, 4507 (2020)

    Article  ADS  Google Scholar 

  35. J. Mukherjee, D. Bhowmik, M. Mukherjee, B. Satpati, P. Karmakar, J. Appl. Phys. 127, 145302 (2020)

    Article  ADS  Google Scholar 

  36. W. Li, X. Zhan, X. Song, S. Si, R. Chen, J. Liu, Z. Wang, J. He, X. Xia, Small 15, 1901820 (2019)

    Article  Google Scholar 

  37. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Meth. Phys. Res. B 268, 1818 (2010)

    Article  ADS  Google Scholar 

  38. E. Benamar, M. Rami, C. Messaoudi, D. Sayah, A. Ennaoui, Sol. Energy Mater. Sol. Cells 56, 125–139 (1999)

    Article  Google Scholar 

  39. A. Walsh, J.L.F.D. Silva, S.-H. Wei, Phys. Rev. B 78, 075211 (2008)

    Article  ADS  Google Scholar 

  40. E. Burstein, Phys. Rev. 93, 632–701 (1954)

    Article  ADS  Google Scholar 

  41. D. Bhowmik, Thesis, Homi Bhabha National Institute (2019)

  42. G.B. Gonzalez, J.B. Cohen, J.H. Hwang, T.O. Mason, J.P. Hodges, J.D. Jorgensen, J. Appl. Phys. 89, 2550–2555 (2001)

    Article  ADS  Google Scholar 

  43. M. Thirumoorthi, J.T.J. Prakash, Superlattices Microstruct. 85, 237–247 (2015)

    Article  ADS  Google Scholar 

  44. T.J. Peshek, J.M. Burst, T.J. Coutts, T.A. Gessert, J. Vac. Sci. Technol. A 34, 021201 (2016)

    Article  Google Scholar 

  45. R. Hashimoto, Y. Abe, T. Nakada, Appl. Phys. Express 1, 015002 (2008)

    Article  ADS  Google Scholar 

  46. D. Bhowmik, P. Karmakar, in Enhancement of optical absorption of Si (100) surfaces by low energy N+ ion beam irradiation, 2018 (AIP Conference Proceedings), p. 100071

  47. V. Kumar, M.K. Jaiswal, R. Gupta, J. Ram, I. Sulania, S. Ojha, X. Sun, N. Koratkar, R. Kumar, J. Mater. Sci.: Mater. Electron. 29, 13328–13336 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors thank IIT Kanpur for financial support to carry out the research. One of the Author (DB) acknowledges Mr. Krishnpal for helping during ion implantation experiment. DB thanks ACMS of IIT Kanpur for XRD, XPS and Electrical Measurements. DB also thanks Mr. Joy Mukherjee for his fruitful discussion on interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak Bhowmik.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowmik, D., Bhattacharjee, S. Optical, structural, and electrical properties of modified indium-tin-oxide (ITO) films on glass surface by low energy ion implantation. Appl. Phys. A 128, 605 (2022). https://doi.org/10.1007/s00339-022-05746-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05746-z

Keywords

Navigation