Skip to main content
Log in

Growth and characterization of PbSe microcrystals via the pulsed laser welding technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Herein lead selenide crystals are fabricated by the pulsed laser welding (PLW) technique within 2 min. The effect of the pulse width on the crystallinity, surface morphology, structural parameters, compositional stoichiometry, electric resistivity and dielectric constant is considered. It is observed that the PLW technique allowed the growth of the crystals in a short period of time. The grown PbSe crystals are mostly cubic containing tetragonal SeO2 as a minor phase. Selenium oxide presented due to the surface oxidation of PbSe after exposing the crystals to air. Remarkable decreases in the electrical resistivity and increase in the dielectric constant by more than two orders of magnitude are achieved as the pulse width increases from 10 to 50 ms. It is observed that the optimum pulse width revealing the highest dielectric constant value is 30 ms. For these samples, a negative capacitance effect is observed for ac signals of frequencies larger than 700 MHz. In addition, analyzing the microwave cut-off frequency spectra for an imposed signal of low amplitude displayed cut-off frequency values larger than 100 GHz at the point where negative capacitance dominates and ac conductance shows a maxima. The features of the PbSe crystals which are prepared in 2 min nominate them for use as negative capacitance sources and band filters suitable for 6G technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Chen, X. Chen, Q. Wang, X. Ning, Z. Li, G. Yan, X. San, S. Wang, Appl. Phys. Lett. 120, 173505 (2022). https://doi.org/10.1063/5.0088584

    Article  ADS  Google Scholar 

  2. L.M. Pérez, A.E. Aouami, K. Feddi, V. Tasco, A.B. Abdellah, F. Dujardin, M. Courel, J.A. Riquelme, D. Laroze, E.L. Feddi, Crystals 12, 1002 (2022). https://doi.org/10.3390/cryst12071002

    Article  Google Scholar 

  3. M.C. Gupta, J.T. Harrison, M.T. Islam, Mater. Adv. 2, 3133–3160 (2021). https://doi.org/10.1039/D0MA00965B

    Article  Google Scholar 

  4. Y. Rodríguez-Lazcano, E. Barrios-Salgado, J.P. Pérez-Orozco, J. Campos, P. Altuzar, E.L. Regla, D. Quesada-Saliba, Appl. Phys. A 127, 1–8 (2021). https://doi.org/10.1007/s00339-021-04682-8

    Article  Google Scholar 

  5. C. Yang, S. Feng, Y. Yu, J. Shen, X. Wei, H. Shi, J. Mater. Chem. C 9, 6536–6543 (2021). https://doi.org/10.1039/D1TC00481F

    Article  Google Scholar 

  6. C. Yan, D. Byrne, J.C. Ondry, A. Kahnt, I.A. Moreno-Hernandez, G.A. Kamat, Z.-J. Liu, C. Laube, M.F. Crook, Ye. Zhang, P. Ercius, A. Paul Alivistos, Sci. Adv. 8, 1700 (2022). https://doi.org/10.1126/sciadv.abq1700

    Article  ADS  Google Scholar 

  7. A.P. Alivisatos, W. Gu, C. Larabell, Annu. Rev. Biomed. Eng. 7, 55–76 (2005). https://doi.org/10.1146/annurev.bioeng.7.060804.100432

    Article  Google Scholar 

  8. D.A. Hanifi, N.D. Bronstein, B.A. Koscher, Z. Nett, J.K. Swabeck, K. Takano, A.M. Schwartzberg, L. Maserati, K. Vandewal, Y. van de Burgt, A. Salleo, A.P. Alivisatos, Science 363, 1199–1202 (2019). https://doi.org/10.1126/science.aat380

    Article  ADS  Google Scholar 

  9. K. Wei, L. Zhang, L. Zhang, K. Wu, H. Zhu, S. Fan, X. Lai, OSA Continuum 3, 2953–2960 (2020). https://doi.org/10.1364/OSAC.403121

    Article  Google Scholar 

  10. Y. Rodríguez-Lazcano, E. Barrios-Salgado, J.P. Pérez-Orozco, J. Campos, P. Altuzar, E.L. Regla, D. Ouesada-Saliba, Appl. Phys. A (2021). https://doi.org/10.1007/s00339-021-04682-8

    Article  Google Scholar 

  11. F. Borousan, R. Yousefi, P. Shabani, Mater. Lett. 268, 127590 (2020). https://doi.org/10.1016/j.matlet.2020.127590

    Article  Google Scholar 

  12. L. Shao, A. Datye, J. Huang, J. Ketkaew, S. WooSohn, S. Zhao, S. Wu, Y. Zhang, U.D. Schwarz, J. Schroers, Sci. Rep. 7, 1–7 (2017)

    Article  Google Scholar 

  13. N. Ghobadi, P. Sohrabi, G. Haidari, S.S.H. Haeri, Thin Films Low Dimens. Syst. 2, 139–147 (2018). https://doi.org/10.22051/jitl.2019.26364.1032

    Article  Google Scholar 

  14. H.K. Khanfar, A.F. Qasrawi, Cryst. Res. Technol. (2022). https://doi.org/10.1002/crat.202200034

    Article  Google Scholar 

  15. L. Yao, S. Inkinen, H.P. Komsa, S. van Dijken, Small 17, 2006273 (2021). https://doi.org/10.1002/smll.202006273

    Article  Google Scholar 

  16. S. Yan, Q. Yang, S. Feng, J. Shen, J. Yang, L. Tang, C. Leng, D. Zhou, J. Electron. Mater. 49, 4929–4935 (2020). https://doi.org/10.1007/s11664-020-08215-6

    Article  ADS  Google Scholar 

  17. A.F. Qasrawi, A.N.A. Ghannam, Mater. Res. Express. 6, 116412 (2019). https://doi.org/10.1088/2053-1591/ab444e

    Article  ADS  Google Scholar 

  18. S.E. Algarni, A.F. Qasrawi, N.M. Khusayfan, Appl. Phys. A 128, 1–11 (2022). https://doi.org/10.1007/s00339-022-05392-5

    Article  Google Scholar 

  19. F.M. Ghaini, M.J. Hamedi, M.J. Torkamany, J. Sabbaghzadeh, Scr. Mater. 56, 955–958 (2007). https://doi.org/10.1016/j.scriptamat.2007.02.019

    Article  Google Scholar 

  20. L.H.K. Alfhaid, A.F. Qasrawi, Phys. Scr. 97, 055820 (2022). https://doi.org/10.1088/1402-4896/ac6545

    Article  ADS  Google Scholar 

  21. A.F. Qasrawi, A.N.A. Ghannam, Mater. Res. Express 6, 116412 (2019). https://doi.org/10.1088/2053-1591/ab444e

    Article  ADS  Google Scholar 

  22. Y. Mao, R. Wu, D. Ding, F. He, Comput. Mater. Sci. 202, 110957 (2022). https://doi.org/10.1016/j.commatsci.2021.110957

    Article  Google Scholar 

  23. Y. H. Tsai, C. Y. Ho, Y. J. Chiou, (2017). In Fifth International Conference on Optical and Photonics Engineering (Vol. 10449, pp. 69–74). SPIE.‏

  24. S. Divya, P. Sivaprakash, S. Raja, S.E. Muthu, I. Kim, N. Renuka, S. Arumugam, T.H. Oh, Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.07.263

    Article  Google Scholar 

  25. D. G. Syarif, J. Usman, Y. I. Pratiwi, M. Yamin, A. Hardian, In IOP Conference Series: Earth and Environmental Science (Vol. 882, No. 1, p. 012018). IOP Publishing

  26. T. Lienert, T. Siewert, S. Babu, V. Acoff, Hybrid laser arc welding. ASM Handbook 6, 321 (2011)

    Google Scholar 

  27. H. Fan, T. Su, H. Li, Y. Zheng, S. Li, M. Hu, Y. Zhou, H. Ma, X. Jia, Solid State Commun. 186, 8–12 (2014). https://doi.org/10.1016/j.ssc.2014.01.018

    Article  ADS  Google Scholar 

  28. A. Barote Maqbul, A. Yadav Abhijit, V. Surywanshi Rangrao, P. Deshmukh Lalasaheb, U. Masumdar Elahipasha, Res. J. Chem. Sci. 2, 15–19 (2012)

    Google Scholar 

  29. S. Ariponnammal, S. Natarajan, Mod. Phys. Lett. B 10, 459–465 (1996). https://doi.org/10.1142/S021798499600050X

    Article  ADS  Google Scholar 

  30. S.S. Yu, Z.P. Wang, S.X. Liu, H. Zhang, H.B. Duan, J. Mol. Struct. 1196, 252–257 (2019). https://doi.org/10.1016/j.molstruc.2019.06.058

    Article  ADS  Google Scholar 

  31. A.F. Qasrawi, E.I. Sahin, M. Emek, J. Electron. Mater. 50, 2223–2231 (2021). https://doi.org/10.1007/s11664-021-08737-7

    Article  ADS  Google Scholar 

  32. L.H.K. Alfhaid, A.F. Qasrawi, Opt. Quant. Electron. 54, 1–11 (2022). https://doi.org/10.1007/s11082-022-03760-2

    Article  Google Scholar 

  33. V. Chauhan, D.P. Samajdar, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68, 3056–3068 (2021). https://doi.org/10.1109/TUFFC.2021.3095616

    Article  Google Scholar 

  34. M. Dragoman, D. Dragoman, Atomic-scale electronics beyond CMOS (Springer, Cham, 2021)

    Book  Google Scholar 

  35. A.F. Qasrawi, A.N.A. Ghannam, Optik 252, 168505 (2022). https://doi.org/10.1016/j.ijleo.2021.168505

    Article  ADS  Google Scholar 

  36. K.N. Rathod, B. Rajyaguru, S. Solanki, V.G. Shrimali, K. Sagapariya, J.H. Markna, P.S. Solanki, N.A. Shah, AIP conference proceedings (AIP Publishing LLC, US, 2016), p.020527

    Google Scholar 

  37. Y.T. Lin, H.C. Kuo, P.I. Wu, M.F. Jhong, P.C. Pan, C.Y. Liu, C.C. Wang, T.L. Wu, 2021 IEEE 71st electronic components and technology conference (ECTC) (IEEE, New York, 2021), pp.564–569

    Book  Google Scholar 

  38. M. S. Nikoo, T. Wang, P. Sohi, M. Zhu, F. Qaderi, R. A. Khadar, A. Floriduz, A. M. Ionescu, and E. Matioli, Beyond 8 THz Displacement-field Nano-switches for 5G and 6G Communications. In: 2021 IEEE International Electron Devices Meeting (IEDM, New York, 2021), pp. 4–5.

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Rabigh, Saudi Arabia, under Grant no. G:378-665-1443. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Funding

This study was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Rabigh, Saudi Arabia, under Grant no. G:378–665-1443.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Qasrawi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkhamisi, M.M., Khanfar, H.K., Qasrawi, A.F. et al. Growth and characterization of PbSe microcrystals via the pulsed laser welding technique. Appl. Phys. A 128, 1106 (2022). https://doi.org/10.1007/s00339-022-06174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06174-9

Keywords

Navigation