Skip to main content
Log in

Synergistic nanomaterials: zinc sulfide-polyaniline for ciprofloxacin electrochemical sensing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ciprofloxacin (CIP) is a fluoroquinolone antibiotic with a broad spectrum of activity, frequently employed in the treatment of diverse bacterial infections. Improper disposal practices of CIP can result in the accumulation of this substance within the natural environment. Hence, it has become imperative to establish expeditious and reliable techniques for the identification of CIP in order to effectively monitor its concentrations and uphold public health security. The electrochemical properties of zinc sulfide-polyaniline (ZnS-PANI) nanocomposite-modified electrodes were thoroughly examined in a systematic manner for the purpose of detecting CIP. This investigation was conducted using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methodologies. The optimal experimental conditions, including scan rate and varying concentrations, were selected in order to attain the highest possible sensitivity and stability of the electrode. The nanocomposite exhibited improved electrochemical activity within a linear range spanning from 50  to 0.75 μM, and a limit of detection of 0.5 µM. The experiment involved the detection of CIP in an environment of interfering substances, namely enrofloxacin (ENR), levofloxacin (LEV), and ofloxacin (OFL), and found to be selective for CIP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data presented in this study are available from the corresponding author upon reasonable request.

References

  1. W.D. Adane, B.S. Chandravanshi, M. Tessema, A simple, ultrasensitive and cost-effective electrochemical sensor for the determination of ciprofloxacin in various types of samples. Sens. Bio-Sens. Res. 39, 100547 (2023)

    Google Scholar 

  2. S.I. Polianciuc, A.E. Gurzău, B. Kiss, M.G. Ştefan, F. Loghin, Antibiotics in the environment: causes and consequences. Med. Pharm. Rep. 93(3), 231 (2020)

    Google Scholar 

  3. M. Imran, S. Ahmed, A.Z. Abdullah, J. Hakami, A.A. Chaudhary, H.A. Rudayni, S.-U.-D. Khan, A. Khan, N.S. Basher, Nanostructured material-based optical and electrochemical detection of amoxicillin antibiotic. Luminescence (2022). https://doi.org/10.1002/bio.4408

    Article  Google Scholar 

  4. Q. Wang, Q. Xue, T. Chen, J. Li, Y. Liu, X. Shan, F. Liu, J. Jia, Recent advances in electrochemical sensors for antibiotics and their applications. Chin. Chem. Lett. 32(2), 609–619 (2021)

    Google Scholar 

  5. S. Bano, A.S. Ganie, R.I.A. Khan, S. Sultana, M.Z. Khan, S. Sabir, Designing and application of PPy/Bi2MoO6/chitosan nanocomposites for electrochemical detection of ciprofloxacin and benzene and evaluation of hydrogen evolution reaction. Surf. Interfaces 29, 101786 (2022)

    Google Scholar 

  6. P.A. Pushpanjali, J.G. Manjunatha, M.T. Shreenivas, The electrochemical resolution of ciprofloxacin, riboflavin and estriol using anionic surfactant and polymer-modified carbon paste electrode. ChemistrySelect 4(46), 13427–13433 (2019)

    Google Scholar 

  7. Rasheed, A.S., Qassim, A.W., Karabat, R.R., Determination of ciprofloxacin in pharmaceutical preparations using (ZIC-HILIC) with UV detection. In: AIP Conference Proceedings, vol. 2457, no. 1. AIP Publishing (2023)

  8. S. Naveed, H. Qamar, W. Jawaid, U. Bokhari, Simple UV spectrophotometric assay of Amlodipine. Am. J. Chem. Appl. 1(4), 66–69 (2014)

    Google Scholar 

  9. T. Gezahegn, B. Tegegne, F. Zewge, B.S. Chandravanshi, Salting-out assisted liquid–liquid extraction for the determination of ciprofloxacin residues in water samples by high performance liquid chromatography–diode array detector. BMC Chem. 13(1), 1–10 (2019)

    Google Scholar 

  10. M.H. El Demeiry, S. Emara, Y. Abuleila, A. Ali, G. Hadad, R.A. Salam, A review article on Ciprofloxacin determination with various analytical techniques. Rec. Pharm. Biomed. Sci. 5(Chemistry), 28–32 (2021)

    Google Scholar 

  11. S. Ahmed, A. Ansari, M.A. Siddiqui, M. Imran, B. Kumari, A. Khan, P. Ranjan, Electrochemical and optical-based systems for SARS-COV-2 and various pathogens assessment. Adv. Nat. Sci. Nanosci. Nanotechnol. 14(3), 033001 (2023). https://doi.org/10.1088/2043-6262/aceda9

    ADS  Google Scholar 

  12. H.A. Alhazmi, M. Imran, S. Ahmed, M. Albratty, H.A. Makeen, A. Najmi, M.S. Alam, Electrochemical Detection of Dopamine using WSe2 Microsheets Modified Platinum Electrode. Phys. Scripta 98(10), 105006 (2023). https://doi.org/10.1088/1402-4896/acf07f

    ADS  Google Scholar 

  13. S. Ahmed, A. Ansari, A.S. Haidyrah, A.A. Chaudhary, M. Imran, A. Khan, Hierarchical molecularly imprinted inverse opal-based platforms for highly selective and sensitive determination of histamine. ACS Appl. Polym. Mater. 4(4), 2783–2793 (2022)

    Google Scholar 

  14. W.D. Adane, B.S. Chandravanshi, M. Tessema, Highly sensitive and selective electrochemical sensor for the simultaneous determination of tinidazole and chloramphenicol in food samples (egg, honey and milk). Sens. Actuators B Chem. 390, 134023 (2023)

    Google Scholar 

  15. Y. Gu, Y. Li, D. Ren, L. Sun, Y. Zhuang, L. Yi, S. Wang, Recent advances in nanomaterial-assisted electrochemical sensors for food safety analysis. Food Frontiers 3(3), 453–479 (2022)

    Google Scholar 

  16. A. Aihaiti, Z. Li, Y. Qin, F. Meng, X. Li, Z. Huangfu, K. Chen, M. Zhang, Construction of electrochemical sensors for antibiotic detection based on carbon nanocomposites. Nanomaterials 12(16), 2789 (2022)

    Google Scholar 

  17. S. Ahmed, A. Ansari, M.A. Siddiqui, A. Khan, P. Ranjan, A potential optical sensor based on nanostructured silicon. J. Mater. Sci. Mater. Electron. 34(8), 755 (2023)

    Google Scholar 

  18. G. Madhaiyan, T.-W. Tung, H.-W. Zan, H.-F. Meng, Lu. Chia-Jung, A. Ansari, W.-T. Chuang, H.-C. Lin, UV-enhanced room-temperature ultrasensitive NO gas sensor with vertical channel nano-porous organic diodes. Sens. Actuators, B Chem. 320, 128392 (2020)

    Google Scholar 

  19. A. Khan, S. Ahmed, B.-Y. Sun, Y.-C. Chen, W.-T. Chuang, Y.-H. Chan, D. Gupta, Wu. Pu-Wei, H.-C. Lin, Self-healable and anti-freezing ion conducting hydrogel-based artificial bioelectronic tongue sensing toward astringent and bitter tastes. Biosens. Bioelectron. 198, 113811 (2022)

    Google Scholar 

  20. M. Imran, A.A. Chaudhary, S. Ahmed, M.M. Alam, A. Khan, N. Zouli, J. Hakami, H.A. Rudayni, S.-U.-D. Khan, Iron oxide nanoparticle-based ferro-nanofluids for advanced technological applications. Molecules 27(22), 7931 (2022)

    Google Scholar 

  21. A. Khan, S.M. Islam, S. Ahmed, R.R. Kumar, M.R. Habib, K. Huang, M. Hu, X. Yu, D. Yang, Direct CVD growth of graphene on technologically important dielectric and semiconducting substrates. Adv. Sci. 5(11), 1800050 (2018)

    Google Scholar 

  22. A. Khan, J. Cong, R.R. Kumar, S. Ahmed, D. Yang, X. Yu, Chemical vapor deposition of graphene on self-limited SiC interfacial layers formed on silicon substrates for heterojunction devices. ACS Appl. Nano Mater. 5(12), 17544–17555 (2022)

    Google Scholar 

  23. P. Ranjan, V. Thomas, P. Kumar, 2D materials as a diagnostic platform for the detection and sensing of the SARS-CoV-2 virus: a bird’s-eye view. J. Mater. Chem. B 9(23), 4608–4619 (2021)

    Google Scholar 

  24. M. Imran, S. Ahmed, E.A. Al-Harthi, M.E. Khan, M.M. Alam, F. Haouala, A.A. Chaudhary, A. Asghar, Electrochemical detection of nitrazepam using leaf-like graphitic carbon nitride nanosheets. Phys. Scripta 98(7), 075003 (2023). https://doi.org/10.1088/1402-4896/acd7b0

    ADS  Google Scholar 

  25. A. Khan, R.R. Kumar, J. Cong, M. Imran, D. Yang, X. Yu, CVD Graphene on textured Silicon: An emerging technologically versatile heterostructure for energy and detection applications. Adv. Mater. Interfaces 9(1), 2100977 (2022)

    Google Scholar 

  26. A. Khan, M.R. Habib, C. Jingkun, M. Xu, D. Yang, X. Yu, New insight into the metal-catalyst-free direct chemical vapor deposition growth of graphene on silicon substrates. J. Phys. Chem. C 125(3), 1774–1783 (2021)

    Google Scholar 

  27. M. Imran, A. Abutaleb, M.A. Ali, T. Ahamad, A.R. Ansari, M. Shariq, D. Lolla, A. Khan, UV light enabled photocatalytic activity of α-Fe2O3 nanoparticles synthesized via phase transformation. Mater. Lett. 258, 126748 (2020)

    Google Scholar 

  28. M. Imran, A.M. Affandi, M.M. Alam, A. Khan, A.I. Khan, Advanced biomedical applications of iron oxide nanostructures based ferrofluids. Nanotechnology 32(42), 422001 (2021)

    ADS  Google Scholar 

  29. J. Cong, A. Khan, J. Li, Y. Wang, Xu. Mingsheng, D. Yang, Yu. Xuegong, Direct growth of graphene nanowalls on silicon using plasma-enhanced atomic layer deposition for high-performance si-based infrared photodetectors. ACS Appl. Electron. Mater. 3(11), 5048–5058 (2021)

    Google Scholar 

  30. S.J. Lee, D.H. Lee, W.-Y. Lee, An electrochemical sensor for capsaicin based on two-dimensional titanium carbide (MXene)-doped titania-Nafion composite film. Microchem. J. 185, 108216 (2023)

    Google Scholar 

  31. S. Ahmed, A. Ansari, M.A. Siddiqui, P. Ranjan, in Metal/Polymeric Hierarchical Platform as Biosensor, eds. by Z.H. Khan, M. Jackson, N.A. Salah. Recent Advances in Nanotechnology. ICNOC 2022. Springer Proceedings in Materials, vol 28 (Springer, Singapore, 2023), pp 17–24. https://doi.org/10.1007/978-981-99-4685-3_3

  32. S. Ahmed, S. Khatun, S. Sallam, A. Ansari, Z.A. Ansari, R.R. Kumar, J. Hakami, A. Khan, Photoresponse of porous silicon for potential optical sensing. Europhys. Lett. 139(3), 36001 (2022)

    ADS  Google Scholar 

  33. A. Ansari, S. Ahmed, M.A. Siddiqui, D.S. Negi, P. Ranjan, in TiO2/PEDOT: PSS Hybrid Matrix for Optoelectronic Devices, eds. by Z.H. Khan, M. Jackson, N.A. Salah. Recent Advances in Nanotechnology. ICNOC 2022. Springer Proceedings in Materials, vol 28, (Springer, Singapore, 2023), pp. 67–73. https://doi.org/10.1007/978-981-99-4685-3_10

  34. S. Yadav, S.S. Nair, V.V.R. Sai, J. Satija, Nanomaterials based optical and electrochemical sensing of histamine: progress and perspectives. Food Res. Int. 119, 99–109 (2019)

    Google Scholar 

  35. G. Varshney, P. Jaiswal, A comparative study on advanced NASICON type and other effective materials for sodium ion batteries (SIBs). Mater. Today Proc. 44, 1776–1782 (2021)

    Google Scholar 

  36. M.A. Siddiqui, S. Ahmed, A. Ansari, P. Ranjan, in Photo and Piezocatalytic Behavior of Ag-NPs-Hybridized Barium Titanate, eds. by Z.H. Khan,M. Jackson, N.A. Salah. Recent Advances in Nanomaterials. ICNOC 2022. Springer Proceedings in Materials, vol 27, (Springer, Singapore, 2024) pp. 345–351. https://doi.org/10.1007/978-981-99-4878-9_49

  37. K. Chaisiwamongkhol, K. Ngamchuea, C. Batchelor-McAuley, R.G. Compton, Electrochemical detection and quantification of gingerol species in ginger (Zingiber officinale) using multiwalled carbon nanotube modified electrodes. Analyst 141(22), 6321–6328 (2016)

    ADS  Google Scholar 

  38. Barajas, M.A., Murphy, M.P., Lasseter. L.C., Sunny, G.I., Mazumdar, H., Gohel, H.A., Emerson, H. P., Kaplan, D.I., Seasonal trend assessment for groundwater contamination detection and monitoring using ARIMA model. In: 2023 IEEE 2nd International Conference on AI in Cybersecurity (ICAIC), pp. 1–7. IEEE, (2023)

  39. Murphy, M.P., Mazumdar, H., Gohel, H. A., Emerson, H. P., Kaplan, D.I., Long short-term memory networks for monitoring groundwater contamination at the hanford site. In: 2023 IEEE 2nd International Conference on AI in Cybersecurity (ICAIC), pp. 1–5. IEEE, (2023)

  40. U.K. Gautam, X. Fang, T. Zhai, L. Li, L. Wu, Y. Bando, D. Golberg, ZnS nanostructures: from synthesis to applications. Prog. Mater. Sci. 56(2), 175–287 (2011)

    Google Scholar 

  41. A. Azmand, H. Kafashan, Physical and electrochemical properties of electrodeposited undoped and Se-doped ZnS thin films. Ceram. Int. 44(14), 17124–17137 (2018)

    Google Scholar 

  42. X. Chen, T. Wang, Y. Han, W. Lv, B. Li, C. Su, M. Zeng et al., Wearable NO2 sensing and wireless application based on ZnS nanoparticles/nitrogen-doped reduced graphene oxide. Sens. Actuators B Chem. 345, 130423 (2021)

    Google Scholar 

  43. G.-J. Lee, JWu. Jerry, Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—a review. Powder Technol. 318, 8–22 (2017)

    Google Scholar 

  44. T.-F. Yi, Y. Li, Y.-M. Li, S. Luo, Y.-G. Liu, ZnS nanoparticles as the electrode materials for high-performance supercapacitors. Solid State Ionics 343, 115074 (2019)

    Google Scholar 

  45. Y. Zhao, X. Wei, N. Peng, J. Wang, Z. Jiang, Study of ZnS nanostructures based electrochemical and photoelectrochemical biosensors for uric acid detection. Sensors 17(6), 1235 (2017)

    ADS  Google Scholar 

  46. A. Kushwaha, M. Aslam, ZnS shielded ZnO nanowire photoanodes for efficient water splitting. Electrochim. Acta 130, 222–231 (2014)

    Google Scholar 

  47. H. Kaur, S.S. Siwal, G. Chauhan, A.K. Saini, A. Kumari, V.K. Thakur, Recent advances in electrochemical-based sensors amplified with carbon-based nanomaterials (CNMs) for sensing pharmaceutical and food pollutants. Chemosphere 304, 135182 (2022)

    ADS  Google Scholar 

  48. S. Shayegh, H.A. Bioki, M.B. Zarandi, N.K. Samani, A. Rahnamanic, ZnS nanoparticles incorporated in polyaniline composite: preparation and optical characterization. Polym. Sci. Ser. B 59, 616–623 (2017)

    Google Scholar 

  49. S. Kang, H. Khan, C. Lee, K. Kwon, C.S. Lee, Investigation of hydrophobic MoSe2 grown at edge sites on TiO2 nanofibers for photocatalytic CO2 reduction. Chem. Eng. J. 420, 130496 (2021)

    Google Scholar 

  50. Z. Cai, B. Liu, X. Zou, H.-M. Cheng, Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 118(13), 6091–6133 (2018)

    Google Scholar 

  51. H. Xue, Y. Dai, W. Kim, Y. Wang, X. Bai, M. Qi, K. Halonen, H. Lipsanen, Z. Sun, High photoresponsivity and broadband photodetection with a band-engineered WSe 2/SnSe 2 heterostructure. Nanoscale 11(7), 3240–3247 (2019)

    Google Scholar 

  52. H. Mittal, M. Khanuja, Nanosheets-and nanourchins-like nanostructures of MoSe 2 for photocatalytic water purification: kinetics and reusability study. Environ. Sci. Pollut. Res. 27, 23477–23489 (2020)

    Google Scholar 

  53. H. Mittal, A. Ivaturi, M. Khanuja, MoSe2-modified ZIF-8 novel nanocomposite for photocatalytic remediation of textile dye and antibiotic-contaminated wastewater. Environ. Sci. Pollut. Res. 30(2), 4151–4165 (2023)

    Google Scholar 

  54. S. Karmakar, A. Pramanik, A.K. Kole, U. Chatterjee, P. Kumbhakar, Syntheses of flower and tube-like MoSe2 nanostructures for ultrafast piezocatalytic degradation of organic dyes on cotton fabrics. J. Hazardous Mater. 424, 127702 (2022)

    Google Scholar 

  55. A.-Z. Abd, A.K.M.A. Al-Sammarraie, Hydrothermal synthesis and characterization of zinc sulfide nanoparticles. Eurasian. Chem. Commun. 3(9), 606–613 (2021)

    Google Scholar 

  56. E. Ghaleghafi, M.B. Rahmani, Exploring different routes for the synthesis of 2D MoS2/1D PANI nanocomposites and investigating their electrical properties. Phys. E Low-dimens. Syst. Nanostruct. 138, 115128 (2022)

    Google Scholar 

  57. Z.H. Ibupoto, K. Khun, X. Liu, M. Willander, Hydrothermal synthesis of nanoclusters of ZnS comprised on nanowires. Nanomaterials 3(3), 564–571 (2013)

    Google Scholar 

  58. A.H. Ali, H. Abd-elhamid Hashem, A. Elfalaky, Preparation, Properties, and Characterization of ZnS Nanoparticles. Eng. Proc. 31(1), 74 (2022)

    Google Scholar 

  59. A. Kumar, H. Mittal, R. Nagar, M. Khanuja, The synergistic effect of acid-etched gC 3 N 4 nanosheets and polyaniline nanofibers for the adsorption and photocatalytic degradation of textile dyes: a study of charge transfer mechanism and intermediate products. Mater. Adv. 3(13), 5325–5336 (2022)

    Google Scholar 

  60. D. Verma, R.K. Sajwan, G.B.V.S. Lakshmi, A. Kumar, P.R. Solanki, A molecularly imprinted polymer based on a novel polyaniline–zinc sulfide nanocomposite for electrochemical detection of trimethylamine N-oxide. Environ. Sci. Nano 9(10), 3992–4006 (2022)

    Google Scholar 

  61. A. Bera, K. Deb, V. Kathirvel, T. Bera, R. Thapa, B. Saha, Flexible diode of polyaniline/ITO heterojunction on PET substrate. Appl. Surf. Sci. 418, 264–269 (2017)

    ADS  Google Scholar 

  62. Nikhil, S.K. Srivastava, A. Srivastava, M. Srivastava, R. Prakash, Electrochemical sensing of roxarsone on natural biomass-derived two-dimensional carbon material as promising electrode material. ACS Omega 7(3), 2908–2917 (2022)

    Google Scholar 

  63. R. Chauhan, A.A.S. Gill, Z. Nate, R. Karpoormath, Highly selective electrochemical detection of ciprofloxacin using reduced graphene oxide/poly (phenol red) modified glassy carbon electrode. J Electroanalyt Chem 871, 114254 (2020)

    Google Scholar 

  64. N. Gissawong, S. Srijaranai, S. Boonchiangma, P. Uppachai, K. Seehamart, S. Jantrasee, E. Moore, S. Mukdasai, An electrochemical sensor for voltammetric detection of ciprofloxacin using a glassy carbon electrode modified with activated carbon, gold nanoparticles and supramolecular solvent. Microchim. Acta 188(6), 208 (2021)

    Google Scholar 

  65. J. Chuiprasert, S. Srinives, N. Boontanon, C. Polprasert, N. Ramungul, N. Lertthanaphol, A. Karawek, S. Kitpati Boontanon, Electrochemical sensor based on a composite of reduced graphene oxide and molecularly imprinted copolymer of polyaniline-poly (o-phenylenediamine) for ciprofloxacin determination: fabrication, characterization, and performance evaluation. ACS Omega 8(2), 2564–2574 (2023)

    Google Scholar 

  66. J. Smajdor, B. Paczosa-Bator, R. Piech, Electrochemical sensor based on the hierarchical carbon nanocomposite for highly sensitive ciprofloxacin determination. Membranes 13(7), 682 (2023)

    Google Scholar 

  67. M. Pan, P. Guo, H. Liu, Lu. Jiawei, Q. Xie, Graphene oxide modified screen-printed electrode for highly sensitive and selective electrochemical detection of ciprofloxacin residues in milk. J. Analyt. Sci. Technol. 12(1), 1–7 (2021)

    Google Scholar 

  68. A. Pollap, K. Baran, N. Kuszewska, J. Kochana, Electrochemical sensing of ciprofloxacin and paracetamol in environmental water using titanium sol based sensor. J. Electroanal. Chem. 878, 114574 (2020)

    Google Scholar 

  69. R.R. Sawkar, M.M. Shanbhag, S.M. Tuwar, K. Mondal, N.P. Shetti, Sodium dodecyl sulfate–mediated graphene sensor for electrochemical detection of the antibiotic drug: ciprofloxacin. Materials 15(22), 7872 (2022)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number RUP3-4.

Funding

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia, project number RUP3-4.

Author information

Authors and Affiliations

Authors

Contributions

SKA: Conceptualisation, investigation, writing —original draft, visualization reviewing, and editing. WMA: Conceptualisation, investigation, writing—original draft, visualization reviewing, and editing. NH: Conceptualisation, data curation, and investigation. SA: Supervision, conceptualization, visualization—reviewing, and editing. AA: Supervision, conceptualization, visualization—reviewing, and editing. MI: Data curation, investigation, review, and editing.

Corresponding authors

Correspondence to Shahzad Ahmed or Arshiya Ansari.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.K., Alamier, W.M., Hasan, N. et al. Synergistic nanomaterials: zinc sulfide-polyaniline for ciprofloxacin electrochemical sensing. Appl. Phys. A 129, 859 (2023). https://doi.org/10.1007/s00339-023-07124-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07124-9

Keywords

Navigation