Skip to main content
Log in

Laser-induced incandescence of titania nanoparticles synthesized in a flame

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Laser induced incandescence experiments were carried out in a flame reactor during titania nanoparticle synthesis. The structure of the reactor employed allowed for a rather smooth particle growth along the flame axis, with limited mixing of different size particles. Particle incandescence was excited by the 4th harmonic of a Nd:YAG laser. The radiation emitted from the particles was recorded in time and checked by spectral analysis. Results were compared with measurements from transmission electron microscopy of samples taken at the same locations probed by incandescence. This was done covering a portion of the flame length within which a particle size growth of a factor of about four was detected. The incandescence decay time was found to increase monotonically with particle size. The attainment of a process control tool in nanoparticle flame synthesis appears to be realistic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.A. Melton, Appl. Opt. 23, 2201 (1984)

    Article  ADS  Google Scholar 

  2. R.L. Vander Wal, K.J. Weiland, Appl. Phys. B 59, 445 (1994)

    Article  ADS  Google Scholar 

  3. B. Quay, T.-W. Lee, T. Ni, R.J. Santoro, Combust. Flame 97, 384 (1994)

    Article  Google Scholar 

  4. P.-E. Bengtsson, M. Aldén, Appl. Phys. B 60, 51 (1995)

    Article  ADS  Google Scholar 

  5. T. Ni, J.A. Pinson, S. Gupta, R.J. Santoro, Appl. Opt. 34, 7083 (1995)

    Article  ADS  Google Scholar 

  6. J. Appel, B. Jungfleisch, M. Warquardt, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 26, 2387 (1996)

    Google Scholar 

  7. R.L. Vander Wal, Appl. Opt. 35, 6548 (1996)

    Article  ADS  Google Scholar 

  8. R.L. Vander Wal, K.A. Jensen, Appl. Opt. 37, 1607 (1998)

    Article  ADS  Google Scholar 

  9. M.Y. Choi, K.A. Jensen, Combust. Flame 112, 485 (1998)

    Article  Google Scholar 

  10. B. Mewes, J.M. Seitzman, Appl. Opt. 36, 709 (1997)

    Article  ADS  Google Scholar 

  11. R.T. Wainner, J.M. Seitzmann, S. Martin, AIAA J. 37, 738 (1999)

    Article  ADS  Google Scholar 

  12. C. Schoemaecker Moreau, E. Therssen, X. Mercier, J.F. Pawels, P. Desgroux, Appl. Phys. B 78, 485 (2004)

    Article  ADS  Google Scholar 

  13. D.R. Snelling, G.J. Smallwood, F. Liu, O.L. Gulder, W.D. Bachalo, Appl. Opt. 44, 6773 (2005)

    Article  ADS  Google Scholar 

  14. S. De Iuliis, F. Cignoli, G. Zizak, Appl. Opt. 44, 7414 (2005)

    Article  ADS  Google Scholar 

  15. P. Roth, A.V. Filippov, J. Aerosol Sci. 27, 95 (1996)

    Article  Google Scholar 

  16. S. Will, S. Schraml, K. Bader, A. Leipertz, Appl. Opt. 37, 5647 (1998)

    Article  ADS  Google Scholar 

  17. R.L. Vander Wal, T.M. Ticich, A.B. Stephens, Combust. Flame 116, 291 (1999)

    Article  Google Scholar 

  18. S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Combust. Flame 120, 439 (2000)

    Article  Google Scholar 

  19. B. Axelsson, R. Collin, P.-E. Bengtsson, Appl. Opt. 39, 3683 (2000)

    Article  ADS  Google Scholar 

  20. T. Lehre, H. Bockhorn, B. Jungfleisch, R. Suntz, Chemosphere 51, 1055 (2003)

    Article  Google Scholar 

  21. T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021 (2003)

    Article  ADS  Google Scholar 

  22. B.F. Kock, B. Tribalet, C. Schulz, P. Roth, Combust. Flame 147, 79 (2006)

    Article  Google Scholar 

  23. S.-A. Kuhlmann, J. Reimann, S. Will, Aerosol Sci. 37, 1696 (2006)

    Article  Google Scholar 

  24. F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Int. J. Heat Mass Transfer 49, 777 (2006)

    Article  Google Scholar 

  25. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006)

    ADS  Google Scholar 

  26. D.E. Rosner, Ind. Eng. Chem. Res. 44, 6045 (2005)

    Article  Google Scholar 

  27. P. Roth, Proc. Combust. Inst. 31, 1773 (2007)

    Article  Google Scholar 

  28. R. Strobel, S.E. Pratsinis, J. Mater. Chem. 17, 4743 (2007)

    Article  Google Scholar 

  29. R.L. Vander Wal, T.M. Ticich, J.R. West, Appl. Opt. 38, 5867 (1999)

    Article  ADS  Google Scholar 

  30. A.V. Filippov, M.W. Markus, P. Roth, J. Aerosol Sci. 30, 71 (1999)

    Article  Google Scholar 

  31. A. Leipertz, S. Dankers, Part. Part. Syst. Charact. 20, 81 (2003)

    Article  Google Scholar 

  32. Y. Murakami, T. Sugatani, Y. Nosaka, J. Phys. Chem. A 109, 8994 (2005)

    Article  Google Scholar 

  33. B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Proc. Combust. Inst. 30, 1689 (2005)

    Article  Google Scholar 

  34. T. Lehre, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 30, 2585 (2005)

    Article  Google Scholar 

  35. A. Eremin, E. Gurentsov, C. Schulz, J. Phys. D, Appl. Phys. 41, 1 (2008)

    Article  Google Scholar 

  36. S. Maffi, F. Cignoli, C. Bellomunno, S. De Iuliis, G. Zizak, Spectrochim. Acta, Part B 63, 202 (2008)

    Article  ADS  Google Scholar 

  37. C.B. Almquist, P. Biswas, J. Catal. 212, 145 (2002)

    Article  Google Scholar 

  38. K.Y. Jung, S.B. Park, H.D. Jang, Catal. Commun. 5, 491 (2004)

    Article  ADS  Google Scholar 

  39. C.L. Yeh, S.H. Yeh, H.K. Ma, Powder. Technol. 145, 1 (2004)

    Article  Google Scholar 

  40. W.C. Hinds, Aerosol Technology (Wiley Interscience, New York, 1999)

    Google Scholar 

  41. T.T. Kodas, M. Hampden-Smith, Aerosol Processing of Materials (Wiley-VCH, New York, 1999)

    Google Scholar 

  42. J. Michalski, T. Wejrzanowski, R. Pielaszek, K. Konopka, W. Lojkowski, K.J. Kurzydlowski, Mater. Sci. Pol. 23, 79 (2005)

    Google Scholar 

  43. S. Will, S. Schraml, A. Leipertz, Proc. Combust. Inst. 26, 2277 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Cignoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cignoli, F., Bellomunno, C., Maffi, S. et al. Laser-induced incandescence of titania nanoparticles synthesized in a flame. Appl. Phys. B 96, 593–599 (2009). https://doi.org/10.1007/s00340-009-3528-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3528-6

PACS

Navigation