Skip to main content
Log in

Flame front tracking in turbulent lean premixed flames using stereo PIV and time-sequenced planar LIF of OH

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper describes the simultaneous application of time-sequenced laser-induced fluorescence imaging of OH radicals and stereoscopic particle image velocimetry for measurements of the flame front dynamics in lean and premixed LP turbulent flames. The studied flames could be acoustically driven, to simulate phenomena important in LP combustion technologies. In combination with novel image post processing techniques we show how the data obtained can be used to track the flame front contour in a plane defined by the illuminating laser sheets. We consider effects of chemistry and convective fluid motion on the dynamics of the observed displacements and analyse the influence of turbulence and acoustic forcing on the observed contour velocity, a quantity we term as s 2D d . We show that this quantity is a valuable and sensitive indicator of flame turbulence interactions, as (a) it is measurable with existing experimental methodologies, and (b) because computational data, e.g. from large eddy simulations, can be post processed in an identical fashion. s 2D d is related (to a two-dimensional projection) of the three-dimensional flame displacement speed s d , but artifacts due to out of plane convective motion of the flame surface and the uncertainty in the angle of the flame surface normal have to be carefully considered. Monte Carlo simulations were performed to estimate such effects for several distributions of flame front angle distributions, and it is shown conclusively that s 2D d is a sensitive indicator of a quantity related to s d in the flames we study. s 2D d was shown to increase linearly both with turbulent intensity and with the amplitude of acousting forcing for the range of conditions studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Klein, N. Chakraborty, K.W. Jenkins, R.S. Cant, Experimental investigation of three-dimensional flame-front structure in premixed turbulent combustion—II. Lean hydrogen/air Bunsen flames. Phys. Fluids 18(055102), 1–15 (2006)

    MathSciNet  Google Scholar 

  2. N. Swaminathan, R.W. Bilger, G.R. Ruetsch, Interdependence of the instantaneous flame front structure and the overall scalar flux in turbulent premixed flames. Combust. Sci. Technol. 128, 73–97 (1997)

    Article  Google Scholar 

  3. A. Lipatnikov, J. Chomiak, A theoretical study of premixed turbulent flame development. Combust. Inst. 30, 843–850 (2005)

    Article  Google Scholar 

  4. J. Fielding, M.B. Long, G. Fielding, M. Komiyama, Systematic errors in optical-flow velocimetry for turbulent flows and flames. Appl. Opt. 40 (2000)

  5. S. Gashi, J. Hult, K.W. Jenkins, N. Chakraborty, R.S. Cant, C. Kaminski, Curvature and wrinkling of premixed flame kernels—comparison of OH-PLIF and DNS data. Proc. Combust. Inst. 30, 809–817 (2005)

    Article  Google Scholar 

  6. J. Hult, M. Richter, J. Nygren, M. Aldén, A. Hultqvist, M. Christensen, B. Johansson, Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines. Appl. Opt. 41(24), 5002–5014 (2002)

    Article  ADS  Google Scholar 

  7. T.W. Lee, S.J. Lee, Direct comparison of turbulent burning velocity and flame surface properties in turbulent premixed flames. Combust. Flame 132, 492–502 (2003)

    Article  Google Scholar 

  8. E. Conte, K. Boulouchus, Experimental investigation into the effect of reformer gas addition on flame speed and flame front propagation in premixed, homogeneous charge gasoline engines. Combust. Flame 146, 329–347 (2006)

    Article  Google Scholar 

  9. Y.C. Chen, R.W. Bilger, Experimental investigation of three-dimensional flame-front structure in premixed turbulent combustion—II. Lean hydrogen/air Bunsen flames. Combust. Flame 138, 155–174 (2004)

    Article  Google Scholar 

  10. R. Abu-Gharbieh, G. Hamarneh, T. Gustavsson, C.F. Kaminski, Level set curve matching and particle image velocimetry for resolving chemistry and turbulence interactions in propagating flames. J. Math. Imaging Vis. 19, 199–218 (2003)

    Article  Google Scholar 

  11. C.F. Kaminski, X.S. Bai, J. Hult, A. Dreizler, S. Lindenmaier, L. Fuchs, Flame growth and wrinkling in a turbulent flow. Appl. Phys. B, Lasers Opt. 71, 711–716 (2000)

    Article  ADS  Google Scholar 

  12. J. Hult, U. Meier, W. Meier, A. Harvey, C.F. Kaminski, Experimental analysis of local flame extinction in a turbulent jet diffusion flame by high repetition 2D laser techniques and multi-scalar measurements. Proc. Combust. Inst. 30, 701–709 (2005)

    Article  Google Scholar 

  13. C.F. Kaminski, J. Hult, M. Alden, High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame. Appl. Phys. B, Lasers Opt. 68, 757–760 (1999)

    Article  ADS  Google Scholar 

  14. T. Echekki, J.H. Chen, Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame 116, 184–202 (1996)

    Article  Google Scholar 

  15. N. Chakraborty, E. Mastorakos, Numerical investigation of edge flame propagation characteristics in turbulent mixing layers. Phys. Fluids 18(105103), 513–523 (2006)

    Google Scholar 

  16. N. Chakraborty, R.S. Cant, Influence of Lewis number on strain rate effects in turbulent premixed flame propagation. Heat Mass Transf. 49, 2158–2172 (2006)

    Article  Google Scholar 

  17. C. Pantano, Direct simulations of non-premixed flame extinction in a methane-air jet with reduced chemistry. J. Fluid Mech. 541, 231–270 (2004)

    Article  ADS  Google Scholar 

  18. C. Yoo, H.G. Im, Transient dynamics of edge flames in a laminar nonpremixed hydrogen-air counterflow. Proc. Combust. Inst. 30, 349–356 (2004)

    Article  Google Scholar 

  19. N. Peters, P. Terhoeven, J.H. Chen, T. Echekki, Statistics of flame displacement speeds from computations of 2D methane-air flames. Proc. Combust. Inst. 27, 833–840 (1998)

    Google Scholar 

  20. N. Chakraborty, R.S. Cant, Unsteady effects of strain rate and curvature on turbulent premixed flames in inlet-outlet configuration. Combust. Flame 137, 129–147 (2004)

    Article  Google Scholar 

  21. N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  22. B. Ayoola, G. Hartung, C.A. Armitage, J. Hult, R.S. Cant, C.F. Kaminski, Temperature response of turbulent premixed flames to inlet velocity oscillations. Exp. Fluids 46, 27–41 (2009)

    Article  Google Scholar 

  23. R. Balachandran, B.O. Ayoola, C.F. Kaminski, A.P. Dowling, E. Mastorakos, Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame 143(1–2), 37–55 (2005)

    Article  Google Scholar 

  24. R. Balchandran, Experimental investigation of the response of turbulent premixed flames to acoustic oscillations, Ph.D. thesis, University of Cambridge, Department of Engineering, Cambridge, UK, 2006

  25. B.O. Ayoola, R. Balachandran, J.H. Frank, E. Mastorakos, C.F. Kaminski, Spatially resolved heat release rate measurements in turbulent premixed flames. Combust. Flame 144(1–2), 1–16 (2006)

    Article  Google Scholar 

  26. G. Hartung, J. Hult, C.F. Kaminski, J. Rogerson, N. Swaminathan, Effect of heat release on turbulence and its interaction with scalar in premixed combustion. Phys. Fluids 20, 445–473 (2008)

    Article  Google Scholar 

  27. F. Scarano, M.L. Riethmuller, Iterative multigrid approach in PIV image processing with discrete window offset. Exp. Fluids 26(12), 513–523 (1999)

    Article  Google Scholar 

  28. H. Malm, G. Sparr, J. Hult, C.F. Kaminski, Nonlinear diffusion filtering of images obtained by planar laser-induced fluorescence spectroscopy. J. Opt. Soc. Am. A 17(12), 2148–2156 (2000)

    Article  ADS  Google Scholar 

  29. J. Canny, A computational approach to edge-detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  30. IDL, IDL—technical programming language. http://www.ittvis.com/idl/, 2007

  31. K. Jambunathan, X.Y. Ju, B.N. Dobbins, S. Ashforthfrost, An improved cross-correlation technique for particle image velocimetry. Meas. Sci. Technol. 6(5), 507–514 (1995)

    Article  ADS  Google Scholar 

  32. I. Boxx, C. Kittler, R. Gordon, B. Böhm, M. Aigner, A. Dreizler, W. Meier, Simultaneous three component PIV/OH-PLIF measurements of a turbulent lifted, C3H8-argon jet diffusion flame at 1.5 kHz repetition rate. Proc. Combust. Inst. 32(1), 905–912 (2009)

    Article  Google Scholar 

  33. A.M. Steinberg, J.F. Driscoll, S.L. Ceccio, Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV. Exp. Fluids 44, 985–999 (2008)

    Article  Google Scholar 

  34. R. Chrystie, I.S. Burns, J. Hult, C. Kaminski, On the improvement of two-dimensional curvature computation and its application to turbulent premixed flame correlations. Meas. Sci. Technol. 19, 125503 (2008)

    Article  ADS  Google Scholar 

  35. J. Rehm, N. Clemens, The association of scalar dissipation rate layers and the OH zones with strain, vorticity, and 2D dilitation fields in turbulent nonpremixed jets and jet flames, American Institute of Aeronautics and Astronautics, Reston, VA. Paper No. AIAA-99-0676, 1999

  36. Y.-C. Chen, R.W. Bilger, Experimental investigation of three-dimensional flame front structure in premixed turbulent combustion—I: hydrocarbon/air Bunsen flames. Combust. Flame 131(4), 400–435 (2002)

    Article  Google Scholar 

  37. T. Hirasawa, C.J. Sung, A. Joshi, Z. Yang, H. Wang, C.K. Law, Determination of laminar flame speeds using digital particle image velocimetry: binary fuel blends of ethylene, n-butane, and toluene. Proc. Combust. Inst. 29, 1427–1434 (2002)

    Article  Google Scholar 

  38. R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller, A FORTRAN program for modelling steady laminar one-dimensional premixed flames. Sandia National Laboratories Report SAND85-8240, 1993

  39. P. Flohr, H. Pitsch, A turbulent flame speed closure model for LES of industrial burner flows, Centre of Turbulence Research, Proceedings of the summer programme, University of Stanford, Stanford, USA, 2000, pp. 169–179

  40. V.L. Zimont, A.N. Lipatnikov, A numerical model of premixed turbulent combustion of gases. Chem. Phys. Rep. 14(7), 993–1025 (1995)

    Google Scholar 

  41. J. Hult, S. Gashi, N. Chakraborty, M. Klein, K.W. Jenkins, S. Cant, C.F. Kaminski, Measurement of flame surface density for turbulent premixed flames using PLIF and DNS. Combust. Inst. 31, 1319–1326 (2007)

    Article  Google Scholar 

  42. B. Ayoola, Laser-based measurement of heat release rate and temperature in turbulent premixed flames, Ph.D. thesis, University of Cambridge, Department of Chemical Engineering, Cambridge, UK, 2006

  43. J.H.C.N. Chakraborty, E.R. Hawkes, R.S. Cant, Effects of strain rate and curvature on surface density function transport in turbulent premixed CH4-air and H2-air flames: A comparative study. Combust. Flame 154, 259–280 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. F. Kaminski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartung, G., Hult, J., Balachandran, R. et al. Flame front tracking in turbulent lean premixed flames using stereo PIV and time-sequenced planar LIF of OH. Appl. Phys. B 96, 843–862 (2009). https://doi.org/10.1007/s00340-009-3647-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3647-0

PACS

Navigation