Skip to main content
Log in

In situ Raman characterization of nanoparticle aerosols during flame synthesis

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Raman spectroscopy is applied to diagnose nanoparticle presence and characteristics in a gaseous flow field. Specifically, in situ monitoring of the Raman-active modes of TiO2 and Al2O3 nanoparticles in aerosol form is demonstrated in high-temperature flame environments. This technique serves as a sensitive and reliable way to characterize particle composition and crystallinity (e.g. anatase versus rutile) and delineate the phase conversion of nanoparticles as they evolve in the flow field. The effect of temperature on the solid-particle Raman spectra is investigated by seeding nanoparticles into a co-flow jet diffusion flame, where local gas-phase temperatures are correlated by shape-fitting the N2 vibrational Stokes Q-branch Raman spectra. Applying the technique to a flame synthesis environment, the results demonstrate that in situ Raman of as-formed nanoparticles can be readily applied to other gas-phase synthesis systems, especially as an on-line diagnostic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.E. Pratsinis, Progr. Energy Combust. Sci. 24, 197 (1998)

    Article  Google Scholar 

  2. M.S. Wooldridge, Progr. Energy Combust. Sci. 24, 63 (1998)

    Article  Google Scholar 

  3. N.G. Glumac, Y.J. Chen, G. Skandan, J. Mater. Res. 13, 2572 (1998)

    Article  ADS  Google Scholar 

  4. H. Zhao, X. Liu, S.D. Tse, J. Nanopart. Res. 10, 907 (2008)

    Article  Google Scholar 

  5. H. Zhao, X. Liu, S.D. Tse, J. Aerosol Sci. 40, 919 (2009)

    Article  Google Scholar 

  6. F. Xu, X. Liu, S.D. Tse, Carbon 44, 570 (2006)

    Article  MATH  Google Scholar 

  7. F. Xu, H. Zhao, S.D. Tse, Proc. Combust. Inst. 31, 1839 (2007)

    Article  Google Scholar 

  8. F. Xu, X. Liu, S.D. Tse, F. Cosandey, B.H. Kear, Chem. Phys. Lett. 449, 175 (2007)

    Article  ADS  Google Scholar 

  9. F. Xu, S.D. Tse, J.F. Al-Sharab, B.H. Kear, Appl. Phys. Lett. 88, 243115 (2006)

    Article  ADS  Google Scholar 

  10. P.W. Morrison, R. Raghavan, A.J. Timpone, C.P. Artelt, S.E. Pratsinis, Chem. Mater. 9, 2702 (1997)

    Article  Google Scholar 

  11. G. Beaucage, Nat. Mater. 3, 370 (2004)

    Article  ADS  Google Scholar 

  12. Y. Xing, U.O. Koylu, D.E. Rosner, Appl. Opt. 38, 2686 (1999)

    Article  ADS  Google Scholar 

  13. D. Mukherjee, A. Rai, M.R. Zachariah, J. Aerosol Sci. 37, 677 (2006)

    Article  Google Scholar 

  14. S. Maffi, F. Cignoli, C. Bellomunnoa, S. De Iuliisa, G. Zizak, Spectrochim. Acta, Part B: At. Spectrosc. 63, 202 (2008)

    Article  ADS  Google Scholar 

  15. L.S. Hsu, C.Y. She, Opt. Lett. 10, 638 (1985)

    Article  ADS  Google Scholar 

  16. C.R. Aita, Appl. Phys. Lett. 90, 213112 (2007)

    Article  ADS  Google Scholar 

  17. M.P. Moret, R. Zallen, D.P. Vijay, S.B. Desu, Thin Solid Films 366, 8 (2000)

    Article  ADS  Google Scholar 

  18. I. De Wolf, Semicond. Sci. Technol. 11, 139 (1996)

    Article  ADS  Google Scholar 

  19. Z.L. Wang, Characterization of Nanophase Materials (Wiley-VCH, New York, 2000)

    Google Scholar 

  20. W. Ma, Z. Lu, M. Zhang, Appl. Phys. A: Mater. Sci. Process. 66, 621 (1998)

    Article  ADS  Google Scholar 

  21. D. Bersani, P.P. Lottici, X.Z. Ding, Appl. Phys. Lett. 72, 73 (1998)

    Article  ADS  Google Scholar 

  22. M.J. Scepanovic, M. Grujic-Brojcin, Z.D. Dohcevic, Z.V. Popovic, Appl. Phys. A 86, 365 (2007)

    Article  ADS  Google Scholar 

  23. S.-M. Oh, T. Ishigaki, Thin Solid Films 457, 186 (2004)

    Article  ADS  Google Scholar 

  24. S.R. Emory, S. Nie, Anal. Chem. 69, 2631 (1997)

    Article  Google Scholar 

  25. M.S. Dresselhaus, G. Dresselhaus, G. Saito, R. Jor, Phys. Rep. 409, 47 (2005)

    Article  ADS  Google Scholar 

  26. D.S. Bethune, G. Meijer, W.C. Tang, H.J. Rosen, Chem. Phys. Lett. 174, 219 (1990)

    Article  ADS  Google Scholar 

  27. N. Everall, J.B. King, I. Clegg, Chem. Br. 36, 40 (2000)

    Google Scholar 

  28. S.K. Sharma, S.M. Angel, M. Ghosh, H.W. Hubble, P.G. Lucey, Appl. Spectrosc. 56, 699 (2002)

    Article  ADS  Google Scholar 

  29. R.J. Hall, L.R. Boedeker, Appl. Opt. 23, 1340 (1984)

    Article  ADS  Google Scholar 

  30. R.L. Farrow, R.P. Lucht, G.L. Clark, R.E. Palmer, Appl. Opt. 24, 2241 (1985)

    Article  ADS  Google Scholar 

  31. E.J. Davis, G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer-Verlag, Berlin, 2002)

    Google Scholar 

  32. A.K. Misra, S.K. Sharma, P.G. Lucey, Lunar Planet. Sci. XXXVI, 1546 (2005)

    ADS  Google Scholar 

  33. A. Li Bassi, D. Cattaneo, V. Russo, C.E. Bottani, E. Barborini, T. Mazza, P. Piseri, P. Milani, F.O. Ernst, K. Wegner, S.E. Pratsinis, J. Appl. Phys. 98, 074305 (2005)

    Article  ADS  Google Scholar 

  34. W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen, J. Phys. D: Appl. Phys. 33, 912 (2000)

    Article  ADS  Google Scholar 

  35. C. Pighini, D. Aymes, N. Millot, L. Saviot, J. Nanopart. Res. 9, 309 (2007)

    Article  Google Scholar 

  36. T. Ohsaka, J. Phys. Soc. Jpn. 48, 1661 (1980)

    Article  ADS  Google Scholar 

  37. S.P.S. Porto, P.A. Fluery, T.C. Damen, Phys. Rev. 154, 522 (1967)

    Article  ADS  Google Scholar 

  38. P.P. Lottici, D. Bersani, M. Braghini, A. Montenero, Appl. Phys. A 28, 177 (1993)

    Google Scholar 

  39. Y. Hara, M. Nicol, Phys. Status Solidi B 94, 317 (1979)

    Article  ADS  Google Scholar 

  40. U. Balachandran, N.G. Eror, J. Solid State Chem. 42, 276 (1982)

    Article  ADS  Google Scholar 

  41. C.A. Melendres, A. Narayanasamy, V.A. Maroni, R.W. Siegel, J. Mater. Res. 4, 1246 (1989)

    Article  ADS  Google Scholar 

  42. A. Mortensen, D.H. Christensen, O.F. Nielsen, E. Pedersen, J. Raman Spectrosc. 22, 47 (1991)

    Article  ADS  Google Scholar 

  43. A. Misra, H.D. Bista, M.S. Navatia, R.K. Thareja, J. Narayan, Mater. Sci. Eng. B 79, 49 (2001)

    Article  Google Scholar 

  44. R. Krishnan, R. Kesavamoorthy, S. Dash, A.K. Tyagi, Baldev Raj, Scr. Mater. 48, 1099 (2003)

    Article  Google Scholar 

  45. R. Lewis, H.G.M. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (Marcel Dekker, New York, 2001)

    Google Scholar 

  46. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach Publishers, New York, 1996)

    Google Scholar 

  47. N. Everall, T. Hahn, P. Matousek, A.W. Parker, M. Towrie, Appl. Spectrosc. 55, 1701 (2001)

    Article  ADS  Google Scholar 

  48. V. Swamy, A. Kuznetsov, L.S. Dubrovinsky, R.A. Caruso, D.G. Shchukin, B.C. Muddle, Phys. Rev. B 71, 184302 (2005)

    Article  ADS  Google Scholar 

  49. A.J. Rulison, P.F. Miquel, J.L. Katz, J. Mater. Res. 11, 3083 (1996)

    Article  ADS  Google Scholar 

  50. R.D. Shannon, J.A. Pask, Am. Mineral. 49, 1707 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Tse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Smith, M.E. & Tse, S.D. In situ Raman characterization of nanoparticle aerosols during flame synthesis. Appl. Phys. B 100, 643–653 (2010). https://doi.org/10.1007/s00340-010-4091-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4091-x

Keywords

Navigation