Skip to main content
Log in

Pump-probe optical response and four-wave mixing in intersubband transitions of a semiconductor quantum well

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We study theoretically the absorption and dispersion of a probe field in the presence of a near-resonant pump field and the four-wave mixing in intersubband transitions of a semiconductor quantum-well structure. We take into account the effects of electron-electron interactions and consider the interaction of the two-subband system with rectangular electromagnetic fields. For the description of the system dynamics we use the effective nonlinear Bloch equations, which due to the effects of electron-electron interactions contain renormalized terms for the transition energy and the applied field. We combine these equations and write the proper differential equations of the density matrix elements for the several nonlinear optical processes, under the rotating wave approximation. These equations are solved analytically, in the steady state, for a GaAs/AlGaAs quantum-well structure. We show that the probe absorption and dispersion and the four-wave mixing spectra of a strongly driven two-subband system can be significantly dependent on the frequency and the intensity of the pump field and on electron sheet density. Specifically, we have found that the absorption, dispersion and the four-wave mixing spectra are practically independent of the electron sheet density in the case that the pump field is on resonance, and in the case for a rather strong pump field independently of its detuning. In the case of moderate intensity and off-resonant pump fields the influence of the electron-electron interactions on the reported spectra is more eminent for positive detuning of the pump field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Faist, F. Capasso, C. Sirtori, K.W. West, L.N. Pfeiffer, Nature (Lond.) 390, 589 (1997)

    Article  ADS  Google Scholar 

  2. H. Schmidt, K.L. Campman, A.C. Gossard, A. Imamoglu, Appl. Phys. Lett. 70, 3455 (1997)

    Article  ADS  Google Scholar 

  3. S.M. Sadeghi, S.R. Leffler, J. Meyer, Phys. Rev. B 59, 15388 (1999)

    Article  ADS  Google Scholar 

  4. G.B. Serapiglia, E. Paspalakis, C. Sirtori, K.L. Vodopyanov, C.C. Phillips, Phys. Rev. Lett. 84, 1019 (2000)

    Article  ADS  Google Scholar 

  5. L. Silvestri, F. Bassani, G. Czajkowski, B. Davoudi, Eur. Phys. J. B 27, 89 (2002)

    ADS  Google Scholar 

  6. J.F. Dynes, M.D. Frogley, M. Beck, J. Faist, C.C. Phillips, Phys. Rev. Lett. 94, 157403 (2005)

    Article  ADS  Google Scholar 

  7. A. Imamoglu, R.J. Ram, Opt. Lett. 19, 1744 (1994)

    Article  ADS  Google Scholar 

  8. M.D. Frogley, J.F. Dynes, M. Beck, J. Faist, C.C. Phillips, Nat. Mater. 5, 175 (2006)

    Article  ADS  Google Scholar 

  9. H. Schmidt, A. Imamoglu, Opt. Commun. 131, 333 (1996)

    Article  ADS  Google Scholar 

  10. S.M. Sadeghi, H.M. van Driel, J.M. Fraser, Phys. Rev. B 62, 15386 (2000)

    Article  ADS  Google Scholar 

  11. A. Joshi, M. Xiao, Appl. Phys. B 79, 65 (2004)

    Article  ADS  Google Scholar 

  12. J.-H. Li, Phys. Rev. B 75, 155329 (2007)

    Article  ADS  Google Scholar 

  13. S.M. Sadeghi, S.R. Leffler, J. Meyer, E. Mueller, J. Phys., Condens. Matter 10, 2489 (1998)

    Article  ADS  Google Scholar 

  14. J.F. Dynes, M.D. Frogley, J. Rodger, C.C. Phillips, Phys. Rev. B 72, 085323 (2005)

    Article  ADS  Google Scholar 

  15. J.H. Wu, J.Y. Gao, J.H. Xu, L. Silvestri, M. Artoni, G.C. La Rocca, F. Bassani, Phys. Rev. Lett. 95, 057401 (2005)

    Article  ADS  Google Scholar 

  16. J.H. Wu, J.Y. Gao, J.H. Xu, L. Silvestri, M. Artoni, G.C. La Rocca, F. Bassani, Phys. Rev. A 73, 053818 (2006)

    Article  ADS  Google Scholar 

  17. J.F. Dynes, E. Paspalakis, Phys. Rev. B 73, 233305 (2006)

    Article  ADS  Google Scholar 

  18. H. Sun, S.-Q. Gong, Y.-P. Niu, S.-Q. Jin, R.-X. Li, Z.-Z. Xu, Phys. Rev. B 74, 155314 (2006)

    Article  ADS  Google Scholar 

  19. J.-H. Li, X.-Y. Xao, J.-B. Liu, X.-X. Yang, Phys. Lett. A 372, 716 (2008)

    Article  ADS  MATH  Google Scholar 

  20. X.-Y. Hao, W.-X. Yang, X. Lu, J. Liu, P. Huang, C. Ding, X. Yang, Phys. Lett. A 372, 7081 (2008)

    Article  ADS  MATH  Google Scholar 

  21. M.A. Anton, F. Carreno, O.G. Calderon, S. Melle, Opt. Commun. 281, 644 (2008)

    Article  ADS  Google Scholar 

  22. W.-X. Yang, R.-K. Lee, Europhys. Lett. 83, 14002 (2008)

    Article  ADS  Google Scholar 

  23. W.-X. Yang, X. Yang, R.-K. Lee, Opt. Express 17, 15402 (2009)

    Article  ADS  Google Scholar 

  24. A. Joshi, Phys. Rev. B 79, 115315 (2009)

    Article  ADS  Google Scholar 

  25. A. Olaya-Castro, M. Korkusinski, P. Hawrylak, M.Yu. Ivanov, Phys. Rev. B 68, 155305 (2003)

    Article  ADS  Google Scholar 

  26. T. Müller, W. Parz, G. Strasser, K. Unterrainer, Phys. Rev. B 70, 155324 (2004)

    Article  ADS  Google Scholar 

  27. H.O. Wijewardane, C.A. Ullrich, Appl. Phys. Lett. 84, 3984 (2004)

    Article  ADS  Google Scholar 

  28. A.A. Batista, D.S. Citrin, Phys. Rev. Lett. 92, 127404 (2004)

    Article  ADS  Google Scholar 

  29. A.A. Batista, D.S. Citrin, Phys. Rev. B 74, 195318 (2006)

    Article  ADS  Google Scholar 

  30. E. Paspalakis, M. Tsaousidou, A.F. Terzis, Phys. Rev. B 73, 125344 (2006)

    Article  ADS  Google Scholar 

  31. E. Paspalakis, M. Tsaousidou, A.F. Terzis, J. Appl. Phys. 100, 044312 (2006)

    Article  ADS  Google Scholar 

  32. E. Paspalakis, A. Kanaki, A.F. Terzis, Proc. SPIE 6582, 65821N (2007)

    Article  ADS  Google Scholar 

  33. N. Cui, Y.-P. Niu, H. Sun, S.-Q. Gong, Phys. Rev. B 78, 075323 (2008)

    Article  ADS  Google Scholar 

  34. N. Cui, Y. Xiang, Y.-P. Niu, S.-Q. Gong, New J. Phys. 12, 013009 (2010)

    Article  ADS  Google Scholar 

  35. E. Paspalakis, C. Simserides, A.F. Terzis, J. Appl. Phys. 107, 064306 (2010)

    Article  ADS  Google Scholar 

  36. B.R. Mollow, Phys. Rev. A 5, 1522 (1972)

    Article  ADS  Google Scholar 

  37. B.R. Mollow, Phys. Rev. A 5, 2217 (1972)

    Article  ADS  Google Scholar 

  38. R.W. Boyd, Nonlinear Optics, 2nd edn. (Academic Press, San Diego, 2003), Chap. 6.6

    Google Scholar 

  39. Z. Ficek, S. Swain, Quantum Coherence and Interference: Theory and Experiments (Springer, New York, 2005), Chap. 5.5.1

    Google Scholar 

  40. R.W. Boyd, M.G. Raymer, P. Narum, D.J. Harter, Phys. Rev. A 24, 411 (1981)

    Article  ADS  Google Scholar 

  41. T. Quang, H. Freedhoff, Phys. Rev. A 48, 3216 (1993)

    Article  ADS  Google Scholar 

  42. M. Fleischhauer, C.H. Keitel, M.O. Scully, C. Su, B.T. Ulrich, S.-Y. Zhu, Phys. Rev. A 46, 1468 (1992)

    Article  ADS  Google Scholar 

  43. C. Szymanowski, C.H. Keitel, J. Phys. B 27, 5795 (1994)

    ADS  Google Scholar 

  44. A.D. Wilson-Gordon, H. Friedmann, Phys. Rev. A 38, 4087 (1988)

    Article  ADS  Google Scholar 

  45. A.D. Wilson-Gordon, H. Friedmann, Opt. Commun. 94, 238 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Paspalakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosionis, S.G., Terzis, A.F. & Paspalakis, E. Pump-probe optical response and four-wave mixing in intersubband transitions of a semiconductor quantum well. Appl. Phys. B 104, 33–43 (2011). https://doi.org/10.1007/s00340-010-4365-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4365-3

Keywords

Navigation