Skip to main content
Log in

Pixel-based characterisation of CMOS high-speed camera systems

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Quantifying high-repetition rate laser diagnostic techniques for measuring scalars in turbulent combustion relies on a complete description of the relationship between detected photons and the signal produced by the detector. CMOS-chip based cameras are becoming an accepted tool for capturing high frame rate cinematographic sequences for laser-based techniques such as Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) and can be used with thermographic phosphors to determine surface temperatures. At low repetition rates, imaging techniques have benefitted from significant developments in the quality of CCD-based camera systems, particularly with the uniformity of pixel response and minimal non-linearities in the photon-to-signal conversion. The state of the art in CMOS technology displays a significant number of technical aspects that must be accounted for before these detectors can be used for quantitative diagnostics. This paper addresses these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Upatnieks, J.F. Driscoll, S.L. Ceccio, Proc. Combust. Inst. 29, 1897 (2002)

    Article  Google Scholar 

  2. C. Kittler, A. Dreizler, Appl. Phys. B 89, 163 (2007)

    Article  ADS  Google Scholar 

  3. C.M. Fajardo, J.D. Smith, V. Sick, Appl. Phys. B, Lasers Opt. 85, 25 (2006)

    Article  ADS  Google Scholar 

  4. M. Konle, F. Kiesewetter, T. Sattelmayer, Exp. Fluids 44, 529 (2008)

    Article  Google Scholar 

  5. I. Boxx, C. Heeger, R.L. Gordon, B. Böhm, M. Aigner, A. Dreizler, W. Meier, Proc. Combust. Inst. 32, 905 (2009)

    Article  Google Scholar 

  6. I. Boxx, C. Heeger, R.L. Gordon, B. Böhm, A. Dreizler, W. Meier, Flow Turbul. Combust. (2010). doi:10.1007/s10494-010-9291-2

    Google Scholar 

  7. B. Böhm, C. Heeger, I. Boxx, W. Meier, A. Dreizler, Proc. Combust. Inst. 32, 1647 (2009)

    Article  Google Scholar 

  8. C. Heeger, B. Böhm, S.F. Ahmed, R.L. Gordon, I. Boxx, W. Meier, A. Dreizler, E. Mastorakos, Proc. Combust. Inst. 32, 2957 (2009)

    Article  Google Scholar 

  9. A. Upatnieks, J.F. Driscoll, C.C. Rasmussen, S.L. Ceccio, Combust. Flame 138, 259 (2004)

    Article  Google Scholar 

  10. A.M. Steinberg, J.F. Driscoll, S.L. Ceccio, Exp. Fluids 44, 985 (2008)

    Article  Google Scholar 

  11. I. Boxx, M. Stöhr, C.D. Carter, W. Meier, Appl. Phys. B, Lasers Opt. 95, 23 (2009)

    Article  ADS  Google Scholar 

  12. A. Schröder, R. Geisler, G.E. Elsinga, F. Scarano, U. Dierksheide, Exp. Fluids 44, 305 (2008)

    Article  Google Scholar 

  13. C. Heeger, R.L. Gordon, M.J. Tummers, T. Sattelmayer, A. Dreizler, Exp. Fluids 49, 853 (2010)

    Article  Google Scholar 

  14. T. Kissel, J. Brübach, E. Baum, A. Dreizler, Appl. Phys. B 96, 731 (2009)

    Article  ADS  Google Scholar 

  15. S. Verhelst, T. Wallner, Prog. Energy Combust. Sci. 35, 490 (2009)

    Article  Google Scholar 

  16. E. Oldenhof, M.J. Tummers, E.H. van Veena, D.J.E.M. Roekaerts, Combust. Flame 157, 1167 (2010)

    Article  Google Scholar 

  17. B. Thurow, N. Jiang, M. Samimy, W.R. Lempert, Appl. Opt. 43, 5064 (2005)

    Article  ADS  Google Scholar 

  18. N.B. Jiang, M.C. Webster, W.R. Lempert, Appl. Opt. 48, B23 (2009)

    Article  ADS  Google Scholar 

  19. R. Hain, C.J. Kähler, C. Tropea, Exp. Fluids 42, 403 (2007)

    Article  Google Scholar 

  20. S.E. Bohndiek, A. Blue, A.T. Clark, M.L. Prydderch, R. Turchetta, G.J. Royle, R.D. Speller, IEEE Sens. J. 8, 1734 (2008)

    Article  Google Scholar 

  21. D.W. Holdsworth, R.K. Gerson, A. Fenster, Med. Phys. 17, 876 (1990)

    Article  Google Scholar 

  22. J.R. Janesick, Scientific Charge-Coupled Devices (SPIE, Philadelphia, 2001)

    Book  Google Scholar 

  23. B. Jähne, Practical Handbook on Image Processing for Scientific and Technical Applications, 2nd edn. (CRC Press, Boca Raton, 2004)

    Book  Google Scholar 

  24. B. Pain, B. Hancock, in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications IV, ed. by M.M. Blouke, N. Sampat, R.J. Motta. Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), vol. 5017 (SPIE, Bellingham, 2003), pp. 94–103

    Google Scholar 

  25. J.R. Janesick, Photon Transfer (SPIE, Philadelphia, 2007)

    Book  Google Scholar 

  26. A. Ferrero, J. Campos, A. Pons, in Proceedings of the 9th International Conference on New Developments and Applications in Optical Radiometry, World Radiation Center (2005), pp. 113–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Brübach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, V., Brübach, J., Gordon, R.L. et al. Pixel-based characterisation of CMOS high-speed camera systems. Appl. Phys. B 103, 421–433 (2011). https://doi.org/10.1007/s00340-011-4443-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4443-1

Keywords

Navigation