Skip to main content
Log in

2D mixture fraction measurements in a high pressure and high temperature combustion system using NO tracer-LIF

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Mixture fraction measurements in a jet-in-cross flow configuration at high pressures (15 bar) and temperatures (above 1000 K) were performed using planar laser induced fluorescence of nitric oxide (NO-PLIF) as trace species. The goal was the evaluation of this tracer LIF technique for the characterization of the mixing of fuel and hot exhaust gas in the mixing channel. The fuel (natural gas (NG) or H2/N2/NG mixture) along with the tracer were injected into the crossflow of the exhaust gas and PLIF measurements were performed in different planes. In order to relate the measured NO-LIF signal to fuel concentration and mixture fraction, effects of pressure, temperature and species concentration were taken into account. Numerical calculations and spectroscopic simulations that mimic the experimental conditions were performed to identify excitation schemes that give optimum correlations between the NO-LIF signal and the mixture fraction. The measured NO-PLIF images were transformed into mixture fraction plots using the computed correlations. The paper reports on the experimental challenges encountered during the measurements and the steps taken to overcome those difficulties. Examples of mixture fraction distributions are presented and discussed. The paper concludes with a detailed analysis on the accuracy of the measured mixture fraction values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wolfrum, Proc. Combust. Inst. 27, 1 (1998)

    Google Scholar 

  2. K. Kohse-Höinghaus, J. Jeffries (eds.), Applied Combustion Diagnostics (Taylor & Francis, New York, 2002)

    Google Scholar 

  3. C. Orlemann, C. Schulz, J. Wolfrum, Chem. Phys. Lett. 307, 15 (1999)

    Article  ADS  Google Scholar 

  4. J. Fielding, J.H. Frank, S.A. Kaiser, M.D. Smooke, M.B. Long, Proc. Combust. Inst. 29, 2703 (2002)

    Article  Google Scholar 

  5. J. Kazenwadel, W. Koban, T. Kunzelmann, C. Schulz, Chem. Phys. Lett. 345, 259 (2001)

    Article  ADS  Google Scholar 

  6. R. Barlow, Proc. Combust. Inst. 31, 49 (2007)

    Article  Google Scholar 

  7. W. Meier, P. Weigand, X.R. Duan, R. Giezendanner-Thoben, Combust. Flame 150, 2 (2007)

    Article  Google Scholar 

  8. J.A. Sutton, J.F. Driscoll, Exp. Fluids 41, 603 (2006)

    Article  Google Scholar 

  9. J.A. Sutton, J.F. Driscoll, Proc. Combust. Inst. 31, 1487 (2007)

    Article  Google Scholar 

  10. T.J. McIntyre, H. Kleine, A.F.P. Houwing, Aeronaut. J. 111, 1 (2007)

    Google Scholar 

  11. T. Rossmann, M.G. Mungal, R.K. Hanson, Appl. Opt. 42, 6682 (2003)

    Article  ADS  Google Scholar 

  12. C. Schulz, V. Sick, Prog. Energy Combust. Sci. 31, 75 (2005)

    Article  Google Scholar 

  13. A.O. Vyrodov, J. Heinze, U.E. Meier, J. Quant. Spectrosc. Radiat. Transf. 53, 277 (1995)

    ADS  Google Scholar 

  14. J.R. Reisel, N.M. Laurendeau, Combust. Sci. Technol. 98, 137 (1994)

    Article  Google Scholar 

  15. T. Lee, W. Bessler, H. Kronemayer, C. Schulz, J.B. Jeffries, Appl. Opt. 44, 6718 (2005)

    Article  ADS  Google Scholar 

  16. M. Di Rosa, K.G. Klavuhn, R.K. Hanson, Combust. Sci. Technol. 118, 257 (1996)

    Article  Google Scholar 

  17. A.C. Eckbreth, Laser Diagnostic for Combustion Temperature and Species (Gordon and Breach, New York, 1996)

    Google Scholar 

  18. R. Sadanandan, R. Schiessl, D. Markus, U. Maas, Flow Turbul. Combust. 86, 45 (2011)

    Article  MATH  Google Scholar 

  19. R. Schiessl, S.A. Kaiser, U. Maas, M.B. Long, Proc. Combust. Inst. 32, 887 (2009)

    Article  Google Scholar 

  20. A.R. Karagozian, Prog. Energy Combust. Sci. 36, 531 (2010)

    Article  Google Scholar 

  21. J.U. Schlüter, T. Schönfeld, Flow Turbul. Combust. 65, 177 (2000)

    Article  MATH  Google Scholar 

  22. J. Fleck, P. Griebel, A.M. Steinberg, M. Stöhr, M. Aigner, A. Ciani, J. Eng. Gas Turbine Power 133 (2011, in press)

  23. F. Güthe, J. Hellat, P. Flohr, J. Eng. Gas Turbine Power 131, 021503 (2009)

    Article  Google Scholar 

  24. J. Fleck, P. Griebel, A.M. Steinberg, M. Stöhr, M. Aigner, A. Ciani, in Proc. ASME Turbo Expo, Power for Land, Sea and Air, 14.-18.06.2010, Glasgow, UK, GT2010-22722 (2010)

    Google Scholar 

  25. R. Lückerath, W. Meier, M. Aigner, J. Eng. Gas Turbine Power 130, 011505 (2008)

    Article  Google Scholar 

  26. M. Namazian, J. Kelly, R. Schefer, Proc. Combust. Inst. 25, 1149 (1994)

    Google Scholar 

  27. J. Warnatz, U. Maas, R.W. Dibble, Combustion (Springer, Berlin, 2006)

    Google Scholar 

  28. W. Bessler, Ph.D. thesis, University of Heidelberg (2003)

  29. W. Bessler, C. Schulz, V. Sick, J. Daily, in Proceedings of the Third Joint Meeting of the U.S. Sections of the Combustion Institute, vol. D33 (2003), pp. 1–6

    Google Scholar 

  30. P.H. Paul, C.D. Carter, J.A. Gray, J.L. Durant Jr., J.W. Thoman Jr., Appl. Phys. B 57, 249 (1993)

    Article  ADS  Google Scholar 

  31. C. Schulz, J.D. Koch, D.F. Davidson, J.B. Jeffries, R.K. Hanson, Chem. Phys. Lett. 355, 82 (2002)

    Article  ADS  Google Scholar 

  32. T.B. Settersten, B.D. Patterson, J. Chem. Phys. 124, 234308 (2006)

    Article  ADS  Google Scholar 

  33. W. Bessler, C. Schulz, J.D.T. Lee, J.B. Jeffries, R.K. Hanson, Appl. Opt. 41, 3547 (2002)

    Article  ADS  Google Scholar 

  34. S.H. Smith, M.G. Mungal, J. Fluid Mech. 357, 83 (1998)

    Article  ADS  Google Scholar 

  35. T.F. Fric, A. Roshko, J. Fluid Mech. 279, 1 (1994)

    Article  ADS  Google Scholar 

  36. P. Dagaut, A. Nicolle, Combust. Flame 140, 161 (2005)

    Article  Google Scholar 

  37. T. Faravelli, A. Frassoldati, E. Ranzi, Combust. Flame 132, 188 (2003)

    Article  Google Scholar 

  38. J. Herzler, C. Naumann, in 23rd ICDERS, Irvine, USA (2011) (submitted)

  39. J. Herzler, C. Naumann, Proc. Combust. Inst. 32, 213 (2009)

    Article  Google Scholar 

  40. G. Weiss, W. Meier, Abschlussbericht Forschungsinitiative Kraftwerke des 21. Jahrhunderts (KW21), 619 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fleck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadanandan, R., Fleck, J., Meier, W. et al. 2D mixture fraction measurements in a high pressure and high temperature combustion system using NO tracer-LIF. Appl. Phys. B 106, 185–196 (2012). https://doi.org/10.1007/s00340-011-4655-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4655-4

Keywords

Navigation