Skip to main content
Log in

Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this study, we describe the development of two-dimensional, high repetition-rate (10-kHz) Rayleigh scattering imaging as applied to turbulent flows. In particular, we report what we believe to be the first sets of high-speed 2D Rayleigh scattering images in turbulent non-reacting jets, yielding temporally correlated image sequences of the instantaneous mixture fraction field. Results are presented for turbulent jets of propane issuing into a low-speed co-flow of air at jet-exit Reynolds numbers of 10,000, 15,000, and 30,000 at various axial positions downstream of the jet exit. The quantitative high-speed mixture fraction measurements are facilitated by the use of a calibrated, un-intensified, high-resolution CMOS camera in conjunction with a unique high-energy, high-repetition rate pulse-burst laser system (PBLS) at Ohio State, which yields output energies of ∼200 mJ/pulse at 532 nm with 100-μs laser pulse spacing. The quality, accuracy, and resolution of the imaging system and the resulting image sets are assessed by (1) comparing the mean mixture fraction results to known scaling laws for turbulent jets, (2) comparing instantaneous images/mixture fraction profiles acquired simultaneously with the high-speed CMOS camera and a well-characterized, high-quantum efficiency CCD camera, and (3) comparing statistical quantities such as the probability density function of the mixture fraction results using the high-speed CMOS camera and the CCD camera. Results indicate accurate mixture fraction measurements and a high potential for accurately measuring mixture fraction gradients in both time and space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Peters, Prog. Energy Combust. Sci. 10, 319 (1984)

    Article  Google Scholar 

  2. N. Peters, Proc. Combust. Inst. 21, 1231 (1986)

    ADS  Google Scholar 

  3. M. Namazian, R.W. Schefer, J. Kelly, Combust. Flame 74, 147 (1988)

    Article  Google Scholar 

  4. R.R. Prasad, K.R. Sreenivasan, J. Fluid Mech. 216, 1 (1990)

    Article  ADS  Google Scholar 

  5. W.J.A. Dahm, K.B. Southerland, K.A. Buch, Phys. Fluids A, Fluid Dyn. 3, 1385 (1991)

    Article  ADS  Google Scholar 

  6. K.A. Buch, W.J.A. Dahm, J. Fluid Mech. 317, 21 (1996)

    Article  ADS  Google Scholar 

  7. K.A. Buch, W.J.A. Dahm, J. Fluid Mech. 364, 1 (1998)

    Article  ADS  MATH  Google Scholar 

  8. D.A. Everest, D.A. Feikema, J.F. Driscoll, Proc. Combust. Inst. 26, 129 (1996)

    Google Scholar 

  9. D.A. Feikema, D.A. Everest, J.F. Driscoll, AIAA J. 34, 2531 (1996)

    Article  ADS  Google Scholar 

  10. L.K. Su, N.T. Clemens, Exp. Fluids 27, 507 (1999)

    Article  Google Scholar 

  11. L.K. Su, N.T. Clemens, J. Fluid Mech. 488, 1 (2003)

    Article  ADS  MATH  Google Scholar 

  12. J.H. Frank, S.A. Kaiser, Exp. Fluids 49, 823 (2007)

    Article  Google Scholar 

  13. J.B. Kelman, A.R. Masri, S.H. Starner, R.W. Bilger, Proc. Combust. Inst. 25, 1141 (1994)

    Google Scholar 

  14. A.N. Karpetis, R.S. Barlow, Proc. Combust. Inst. 29, 1929 (2002)

    Article  Google Scholar 

  15. J.H. Frank, S.A. Kaiser, M.B. Long, Proc. Combust. Inst. 29, 2687 (2002)

    Article  Google Scholar 

  16. J.H. Frank, S.A. Kaiser, M.B. Long, Combust. Flame 143, 507 (2005)

    Article  Google Scholar 

  17. D. Geyer, A. Kempf, A. Dreizler, J. Janicka, Proc. Combust. Inst. 30, 681 (2005)

    Article  Google Scholar 

  18. G. Wang, A.N. Karpetis, R.S. Barlow, Combust. Flame 148, 62 (2007)

    Article  Google Scholar 

  19. L. Wehr, W. Meier, P. Kutne, C. Hassa, Proc. Combust. Inst. 31, 3099 (2007)

    Article  Google Scholar 

  20. B.S. Thurow, N. Jiang, M. Samimy, W.R. Lempert, Appl. Opt. 43, 5064 (2005)

    Article  ADS  Google Scholar 

  21. J.D. Miller, M. Slipchenko, T.R. Meyer, N. Jiang, W.R. Lempert, J.R. Gord, Opt. Lett. 34, 1309 (2009)

    Article  ADS  Google Scholar 

  22. N. Jiang, M. Webster, W.R. Lempert, Appl. Opt. 48, B23 (2009)

    Article  ADS  Google Scholar 

  23. K.N. Gabet, N. Jiang, W.R. Lempert, J.A. Sutton, Appl. Phys. B 101, 1 (2010)

    Article  ADS  Google Scholar 

  24. N. Jiang, R.A. Patton, W.R. Lempert, J.A. Sutton, Proc. Combust. Inst. 33, 767 (2011)

    Article  Google Scholar 

  25. A. Upatnieks, K. Laberteaux, S.L. Ceccio, Exp. Fluids 32, 87 (2002)

    Article  Google Scholar 

  26. C.M. Fajardo, V. Sick, Proc. Combust. Inst. 31, 3023 (2007)

    Article  Google Scholar 

  27. A.M. Steinberg, J.F. Driscoll, S.L. Ceccio, Exp. Fluids 44, 985 (2008)

    Article  Google Scholar 

  28. B. Bohm, C. Heeger, W. Meier, A. Dreizler, Proc. Combust. Inst. 32, 1647 (2009)

    Article  Google Scholar 

  29. A.M. Steinberg, J.F. Driscoll, S.L. Ceccio, Exp. Fluids 47, 527 (2009)

    Article  Google Scholar 

  30. M. Stohr, I. Boxx, C.D. Carter, W. Meier, Proc. Combust. Inst. 33, 2953 (2011)

    Article  Google Scholar 

  31. A.M. Steinberg, I. Boxx, C.M. Arndt, J.H. Frank, W. Meier, Proc. Combust. Inst. 33, 1663 (2011)

    Article  Google Scholar 

  32. C. Kittler, A. Dreizler, Appl. Phys. B 89, 163 (2007)

    Article  ADS  Google Scholar 

  33. I. Boxx, C. Heeger, R. Gordon, B. Bohm, A. Dreizler, W. Meier, Combust. Flame 156, 269 (2009)

    Article  Google Scholar 

  34. I. Boxx, M. Stohr, C.D. Carter, W. Meier, Appl. Phys. B 95, 23 (2009)

    Article  ADS  Google Scholar 

  35. M. Stohr, I. Boxx, C.D. Carter, W. Meier, Proc. Combust. Inst. 33, 2953 (2011)

    Article  Google Scholar 

  36. W. Paa, W. Muller, M. Stafast, W. Triebel, Appl. Phys. B 86, 1 (2007)

    Article  ADS  Google Scholar 

  37. M.E. Cundy, V. Sick, Appl. Phys. B 96, 241 (2009)

    Article  ADS  Google Scholar 

  38. J.D. Smith, V. Sick, Appl. Phys. B 81, 579 (2005)

    Article  ADS  Google Scholar 

  39. C.M. Fajardo, J.D. Smith, V. Sick, Appl. Phys. B 85, 25 (2006)

    Article  ADS  Google Scholar 

  40. M. Cundy, T. Schucht, O. Thiele, V. Sick, Appl. Opt. 48, B94 (2009)

    Article  ADS  Google Scholar 

  41. R.L. Gordon, C. Heeger, A. Dreizler, Appl. Phys. B 96, 745 (2009)

    Article  ADS  Google Scholar 

  42. B. Bork, B. Bohm, C. Heeger, S.R. Chakravarthy, A. Dreizler, Appl. Phys. B 101, 487 (2010)

    Article  ADS  Google Scholar 

  43. R.W. Dibble, M.B. Long, Combust. Flame 143, 644 (2005)

    Article  Google Scholar 

  44. P. Wu, W.R. Lempert, R.B. Miles, AIAA J. 38, 672 (2000)

    Article  ADS  Google Scholar 

  45. N. Jiang, M. Webster, W.R. Lempert, J.D. Miller, T.R. Meyer, C.B. Ivey, P.M. Danehy, Appl. Opt. 50, A20 (2011)

    Article  ADS  Google Scholar 

  46. S.E. Bohndiek, A. Blue, A.T. Clar, M.L. Prydderch, R. Turchetta, G.J. Royle, R.D. Speller, IEEE Sens. J. 8, 1734 (2008)

    Article  Google Scholar 

  47. R. Hain, C.J. Kahler, C. Tropea, Exp. Fluids 42, 403 (2007)

    Article  Google Scholar 

  48. V. Weber, J. Brubach, R.L. Gordon, A. Dreizler, Appl. Phys. B (2011). doi:10.1007/s00340-011-4443-1

    Google Scholar 

  49. G.K. Batchelor, J. Fluid Mech. 5, 113 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. G. Taylor, Proc. R. Soc. Lond. 151, 421 (1935)

    Article  ADS  MATH  Google Scholar 

  51. R.A. Antonia, B.R. Satyaprakash, F. Hussain, Phys. Fluids 23, 695 (1980)

    Article  ADS  Google Scholar 

  52. J. Mi, G.J. Nathan, Exp. Fluids 34, 687 (2003)

    Article  Google Scholar 

  53. K.M. Tacina, W.J.A. Dahm, J. Fluid Mech. 415, 23 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Sutton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patton, R.A., Gabet, K.N., Jiang, N. et al. Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering. Appl. Phys. B 106, 457–471 (2012). https://doi.org/10.1007/s00340-011-4658-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4658-1

Keywords

Navigation