Skip to main content
Log in

Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this manuscript, we describe the development of two-dimensional, high-repetition-rate (10-kHz) Rayleigh scattering imaging as applied to turbulent combustion environments. In particular, we report what we believe to be the first sets of high-speed planar Rayleigh scattering images in turbulent non-premixed flames, yielding temporally correlated image sequences of the instantaneous temperature field. Sample results are presented for the well-characterized DLR flames A and B (CH4/H2/N2) at Reynolds numbers of 15,200 and 22,800 at various axial positions downstream of the jet exit. The measurements are facilitated by the use of a user-calibrated, intensified, high-resolution CMOS camera in conjunction with a unique high-energy, high-repetition-rate pulse-burst laser system (PBLS) at Ohio State University, which yields output energies up to 200 mJ/pulse at 532 nm with 100-μs laser pulse spacing. The spatial and temporal resolution of the imaging system and acquired images are compared to the finest spatial and temporal scales expected within the turbulent flames. One of the most important features of the PBLS is the ability to readily change the pulse-to-pulse spacing as the required temporal resolution necessitates it. The quality and accuracy of the high-speed temperature imaging results are assessed by comparing derived statistics (mean and standard deviation) to that of previously reported point-based reference data acquired at Sandia National Laboratories and available within the TNF workshop. Good agreement between the two data sets is obtained providing an initial indication of quantitative nature of the planar, kHz-rate temperature imaging results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. In this manuscript, “temporal resolution” refers to the ability to accurately track flowfield features (whether physical or chemical) in time; that is, any two successive measurements are temporally correlated. Other common uses of “temporal resolution” refer to the general benefit of laser-based diagnostics, where the laser pulses are short enough (compared to fluid and chemical time scales) to adequately “freeze” the flowfield during the measurement.

References

  1. N. Peters, Prog. Energy Combust. Sci. 10, 319 (1984)

    Article  Google Scholar 

  2. N. Peters, Proc. Combust. Inst. 21, 1231 (1986)

    ADS  Google Scholar 

  3. R.W. Bilger, Prog. Energy Combust. Sci. 1, 87 (1976)

    Article  Google Scholar 

  4. D. Everest, J.F. Driscoll, W.J.A. Dahm, D. Feikema, Combust. Flame 101, 58 (1995)

    Article  Google Scholar 

  5. G.H. Wang, N.T. Clemens, P.L. Varghese, Proc. Combust. Inst. 30, 691 (2005)

    Article  Google Scholar 

  6. N.M. Laurendeau, Prog. Energy Combust. Sci. 14, 147 (1988)

    Article  Google Scholar 

  7. A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd edn. (Gordon and Breach, New York, 1996)

    Google Scholar 

  8. K. Kohse-Hoinghaus, J.B. Jeffries (eds.), Applied Combustion Diagnostics (Taylor and Francis, London, 2002)

    Google Scholar 

  9. F.-Q. Zhao, H. Hiroyasu, Prog. Energy Combust. Sci. 19, 447 (1993)

    Article  Google Scholar 

  10. D.A. Long, Raman Spectroscopy (McGraw Hill, New York, 1977)

    Google Scholar 

  11. K. Kohse-Hoinghaus, Prog. Energy Combust. Sci. 20, 203 (1994)

    Article  Google Scholar 

  12. J.W. Daily, Prog. Energy Combust. Sci. 23, 133 (1997)

    Article  Google Scholar 

  13. D.A. Greenhalgh, in Advances in Non-linear Spectroscopy, vol. 15, ed. by R.J.H. Clark, R.E. Hester (Wiley, New York, 1988), pp. 193–251

    Google Scholar 

  14. M. Aldén, A. Omrane, M. Richter, G. Sarner, Prog. Energy Combust. Sci. 37, 422 (2011)

    Article  Google Scholar 

  15. R. Cattolica, Appl. Opt. 20, 1156 (1981)

    Article  ADS  Google Scholar 

  16. R.P. Lucht, N.M. Laurendeau, D.W. Sweeney, Appl. Opt. 21, 3729 (1982)

    Article  ADS  Google Scholar 

  17. M.P. Lee, B.K. McMillin, R.K. Hanson, Appl. Opt. 32, 5379 (1993)

    Article  ADS  Google Scholar 

  18. J.M. Seitzman, R.K. Hanson, P.A. Debarber, C.F. Hess, Appl. Opt. 33, 4000 (1994)

    Article  ADS  Google Scholar 

  19. D. Stepkowski, Prog. Energy Combust. Sci. 18, 463 (1992)

    Article  ADS  Google Scholar 

  20. R.W. Pitz, R.J. Cattolica, F. Robben, L. Talbot, Combust. Flame 27, 313 (1976)

    Article  Google Scholar 

  21. J.R. Smith, Rayleigh temperature profiles in a hydrogen diffusion flame. Sandia Report, SAND78-8726 (1978)

  22. R.W. Dibble, R.E. Hollenbach, Proc. Combust. Inst. 18, 1489 (1981)

    Google Scholar 

  23. M.B. Long, P.S. Levin, D.C. Fourgette, Opt. Lett. 10, 267 (1985)

    Article  ADS  Google Scholar 

  24. D.C. Fourgette, R.M. Zurni, M.B. Long, Combust. Sci. Technol. 44, 307 (1986)

    Article  Google Scholar 

  25. B.S. Thurow, N. Jiang, M. Samimy, W.R. Lempert, Appl. Opt. 43, 5064 (2005)

    Article  ADS  Google Scholar 

  26. J.D. Miller, M. Slipchenko, T.R. Meyer, N. Jiang, W.R. Lempert, J.R. Gord, Opt. Lett. 34, 1309 (2009)

    Article  ADS  Google Scholar 

  27. N. Jiang, M. Webster, W.R. Lempert, Appl. Opt. 48, B23 (2009)

    Article  ADS  Google Scholar 

  28. K.N. Gabet, N. Jiang, W.R. Lempert, J.A. Sutton, Appl. Phys. B 101, 1 (2010)

    Article  ADS  Google Scholar 

  29. N. Jiang, R.A. Patton, W.R. Lempert, J.A. Sutton, Proc. Combust. Inst. 33, 767 (2011)

    Article  Google Scholar 

  30. R.A. Patton, K.N. Gabet, N. Jiang, W.R. Lempert, J.A. Sutton, Appl. Phys. B (2011). doi:10.1007/s00340-011-4658-1

    Google Scholar 

  31. A. Upatnieks, K. Laberteaux, S.L. Ceccio, Exp. Fluids 32, 87 (2002)

    Article  Google Scholar 

  32. C.M. Fajardo, V. Sick, Proc. Combust. Inst. 31, 3023 (2007)

    Article  Google Scholar 

  33. A.M. Steinberg, J.F. Driscoll, S.L. Ceccio, Exp. Fluids 44, 985 (2008)

    Article  Google Scholar 

  34. B. Böhm, C. Heeger, W. Meier, A. Dreizler, Proc. Combust. Inst. 32, 1647 (2009)

    Article  Google Scholar 

  35. A.M. Steinberg, J.F. Driscoll, S.L. Ceccio, Exp. Fluids 47, 527 (2009)

    Article  Google Scholar 

  36. M. Stöhr, I. Boxx, C.D. Carter, W. Meier, Proc. Combust. Inst. 33, 2953 (2011)

    Article  Google Scholar 

  37. A.M. Steinberg, I. Boxx, C.M. Arndt, J.H. Frank, W. Meier, Proc. Combust. Inst. 33, 1663 (2011)

    Article  Google Scholar 

  38. C. Kittler, A. Dreizler, Appl. Phys. B 89, 163 (2007)

    Article  ADS  Google Scholar 

  39. I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, W. Meier, Combust. Flame 156, 269 (2009)

    Article  Google Scholar 

  40. I. Boxx, M. Stöhr, C.D. Carter, W. Meier, Appl. Phys. B 95, 23 (2009)

    Article  ADS  Google Scholar 

  41. M. Stöhr, I. Boxx, C.D. Carter, W. Meier, Proc. Combust. Inst. 33, 2953 (2011)

    Article  Google Scholar 

  42. W. Paa, W. Müller, M. Stafast, W. Triebel, Appl. Phys. B 86, 1 (2007)

    Article  ADS  Google Scholar 

  43. M.E. Cundy, V. Sick, Appl. Phys. B 96, 241 (2009)

    Article  ADS  Google Scholar 

  44. J.D. Smith, V. Sick, Appl. Phys. B 81, 579 (2005)

    Article  ADS  Google Scholar 

  45. C.M. Fajardo, J.D. Smith, V. Sick, Appl. Phys. B 85, 25 (2006)

    Article  ADS  Google Scholar 

  46. M. Cundy, T. Schucht, O. Thiele, V. Sick, Appl. Opt. 48, B94 (2009)

    Article  ADS  Google Scholar 

  47. R.L. Gordon, C. Heeger, A. Dreizler, Appl. Phys. B 96, 745 (2009)

    Article  ADS  Google Scholar 

  48. M. Juddoo, A.R. Masri, Combust. Flame 158, 902 (2011)

    Article  Google Scholar 

  49. B. Böhm, C. Heeger, R.L. Gordon, A. Dreizler, Flow Turbul. Combust. 86, 313 (2011)

    Article  MATH  Google Scholar 

  50. M. Köhler, I. Boxx, K.P. Geigle, W. Meier, Appl. Phys. B 103, 271 (2011)

    Article  ADS  Google Scholar 

  51. C.F. Kaminski, J. Hult, M. Aldén, Appl. Phys. B 68, 757 (1999)

    Article  ADS  Google Scholar 

  52. C.F. Kaminski, J. Hult, M. Aldén, S. Lindenmaier, A. Dreizler, U. Maas, M. Baum, Proc. Combust. Inst. 28, 399 (2000)

    Article  Google Scholar 

  53. A. Dreizler, S. Lindenmaier, U. Maas, J. Hult, M. Aldén, C.F. Kaminski, Appl. Phys. B 70, 287 (2000)

    Article  ADS  Google Scholar 

  54. C.F. Kaminski, X.S. Bai, J. Hult, A. Dreizler, S. Lindenmaier, L. Fuchs, Appl. Phys. B 71, 711 (2000)

    Article  ADS  Google Scholar 

  55. J. Hult, M. Richter, J. Nygren, M. Aldén, A. Hultqvist, M. Christensen, B. Johansson, Appl. Opt. 41, 5002 (2002)

    Article  ADS  Google Scholar 

  56. J. Hult, U. Meier, W. Meier, A. Harvey, C.F. Kaminski, Proc. Combust. Inst. 30, 701 (2005)

    Article  Google Scholar 

  57. S. Gashi, J. Hult, K.W. Jenkins, N. Chakraborty, S. Cant, C.F. Kaminski, Proc. Combust. Inst. 30, 809 (2005)

    Article  Google Scholar 

  58. J. Olofsson, M. Richter, M. Aldén, M. Auge, Rev. Sci. Instrum. 77, 013104 (2006)

    Article  ADS  Google Scholar 

  59. J. Sjoholm, E. Kristensson, M. Richter, M. Aldén, G. Goritz, K. Knebel, Meas. Sci. Technol. 20, 025306 (2009)

    Article  ADS  Google Scholar 

  60. P. Wu, W.R. Lempert, R.B. Miles, AIAA J. 38, 672 (2000)

    Article  ADS  Google Scholar 

  61. B.S. Thurow, A. Satija, K. Lynch, Appl. Opt. 48, 2086 (2009)

    Article  ADS  Google Scholar 

  62. G.-H. Wang, N.T. Clemens, P.L. Varghese, Appl. Opt. 44, 6741 (2005)

    Article  ADS  Google Scholar 

  63. G.-H. Wang, N.T. Clemens, P.L. Varghese, Proc. Combust. Inst. 30, 691 (2005)

    Article  Google Scholar 

  64. G.-H. Wang, N.T. Clemens, P.L. Varghese, R.S. Barlow, Combust. Flame 152, 317 (2008)

    Article  Google Scholar 

  65. V. Bergmann, W. Meier, D. Wolff, W. Stricker, Appl. Phys. B 66, 489 (1998)

    Article  ADS  Google Scholar 

  66. T.R. Meyer, G.B. King, M. Gluesenkamp, J.R. Gord, Opt. Lett. 32 (2007)

  67. B. Bork, B. Böhm, C. Heeger, S.R. Chakravarthy, A. Dreizler, Appl. Phys. B 101, 487 (2010)

    Article  ADS  Google Scholar 

  68. W. Meier, R.S. Barlow, Y.L. Chen, J.Y Chen, Combust. Flame 123, 326 (2000)

    Article  Google Scholar 

  69. N. Jiang, M. Webster, W.R. Lempert, J.D. Miller, T.R. Meyer, C.B. Ivey, P.M. Danehy, Appl. Opt. 50, A20 (2011)

    Article  ADS  Google Scholar 

  70. R.S. Barlow, International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames, http://www.ca.sandia.gov/TNF/abstract.html

  71. S.E. Bohndiek, A. Blue, A.T. Clar, M.L. Prydderch, R. Turchetta, G.J. Royle, R.D. Speller, IEEE Sens. J. 8, 1734 (2008)

    Article  Google Scholar 

  72. R. Hain, C.J. Kahler, C. Tropea, Exp. Fluids 42, 403 (2007)

    Article  Google Scholar 

  73. V. Weber, J. Brübach, R.L. Gordon, A. Dreizler, Appl. Phys. B 103, 421 (2011)

    Article  ADS  Google Scholar 

  74. G.K. Batchelor, J. Fluid Mech. 5, 113 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. G. Taylor, Proc. R. Soc. Lond. 151, 421 (1935)

    Article  ADS  MATH  Google Scholar 

  76. R.A. Antonia, B.R. Satyaprakash, F. Hussain, Phys. Fluids 23, 695 (1980)

    Article  ADS  Google Scholar 

  77. K.A. Buch, W.J.A. Dahm, J. Fluid Mech. 317, 21 (1996)

    Article  ADS  Google Scholar 

  78. K.A. Buch, W.J.A. Dahm, J. Fluid Mech. 364, 1 (1998)

    Article  ADS  MATH  Google Scholar 

  79. L.K. Su, N.T. Clemens, Exp. Fluids 27, 507 (1999)

    Article  Google Scholar 

  80. L.K. Su, N.T. Clemens, J. Fluid Mech. 488, 1 (2003)

    Article  ADS  MATH  Google Scholar 

  81. J. Mi, G.J. Nathan, Exp. Fluids 34, 687 (2003)

    Article  Google Scholar 

  82. J.H. Frank, S.A. Kaiser, Exp. Fluids 44, 221 (2008)

    Article  Google Scholar 

  83. J.H. Frank, S.A. Kaiser, Exp. Fluids 48, 823 (2010)

    Article  Google Scholar 

  84. S.A. Kaiser, J.H. Frank, Meas. Sci. Technol. 22, 045403 (2011)

    Article  ADS  Google Scholar 

  85. J.H. Frank, S.A. Kaiser, J.C. Oefelein, Proc. Combust. Inst. 33, 1373 (2011)

    Article  Google Scholar 

  86. S.B. Pope, Turbulent Flows (Cambridge University Press, New York, 2000)

    Book  MATH  Google Scholar 

  87. C.H. Schneider, A. Dreizler, J. Janicka, Combust. Flame 135, 185 (2000)

    Article  Google Scholar 

  88. N.T. Clemens, Flow Imaging, in Encyclopedia of Imaging Science and Technology (Wiley and Sons, New York, 2002)

    Google Scholar 

Download references

Acknowledgements

The support of Air Force Office of Scientific Research grant FA9550-09-1-0272 (Julian Tishkoff—Technical Monitor) is greatly appreciated. The authors acknowledge previous financial support for the development of the pulse-burst laser system from NASA (Paul Danehy—Technical Monitor), the U.S. Air Force Research Laboratory—Propulsion Directorate (James Gord—Technical Monitor), and the Air Force Office of Scientific Research (J. Schmisseur—Technical Monitor).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Sutton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patton, R.A., Gabet, K.N., Jiang, N. et al. Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering. Appl. Phys. B 108, 377–392 (2012). https://doi.org/10.1007/s00340-012-4880-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-4880-5

Keywords

Navigation