Skip to main content

Advertisement

Log in

Absolute OH concentration profiles measurements in high pressure counterflow flames by coupling LIF, PLIF, and absorption techniques

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A high-pressure combustion chamber enclosing counterflow burners was set-up at ICARE-CNRS laboratory. It allows the stabilization of flat twin premixed flames at atmospheric and high pressure. In this study, lean and stoichiometric methane/air counterflow premixed flames were studied at various pressures (0.1 MPa to 0.7 MPa). Relative OH concentration profiles were measured by Laser Induced Fluorescence. Great care was attached to the determination of the fluorescence signal by taking into account the line broadening and deexcitation by quenching which both arise at high pressure. Subsequently, OH profiles were calibrated in concentration by laser absorption technique associated with planar laser induced fluorescence. Results are successfully compared with literature. The good quality of the results attests of the experimental set-up ability to allow the study of flame structure at high pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Vovelle, J.-L. Delfau, L. Pillier, Combust. Explos. Shock Waves 45, 365 (2009)

    Article  Google Scholar 

  2. K. Kohse-Höinghaus, A. Brockhinke, Combust. Explos. Shock Waves 45, 349 (2009)

    Article  Google Scholar 

  3. K. Kohse-Höinghaus, Prog. Energy Combust. Sci. 20, 203 (1994)

    Article  Google Scholar 

  4. G. Singla, P. Scouflaire, C. Rolon, S. Candel, Combust. Flame 144, 151 (2006)

    Article  Google Scholar 

  5. M.G. Allen, K.R. McManus, D.M. Sonnenfroh, P.H. Paul, Appl. Opt. 34, 6287 (1995)

    Article  ADS  Google Scholar 

  6. W.G. Bessler, C. Schulz, T. Lee, J.B. Jeffries, R.K. Hanson, Appl. Opt. 41, 3547 (2002)

    Article  ADS  Google Scholar 

  7. B.E. Battles, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transf. 54, 521 (1995)

    Article  ADS  Google Scholar 

  8. A. Arnold, R. Bombach, B. Käppeli, A. Schlegel, Appl. Phys. B 64, 579 (1997)

    Article  ADS  Google Scholar 

  9. Q.V. Nguyen, R.W. Dibble, C.D. Carter, G.J. Fiechtner, R.S. Barlow, Combust. Flame 105, 499 (1996)

    Article  Google Scholar 

  10. B. Atakan, J. Heinze, U.E. Meier, Appl. Phys. B 64, 585 (1997)

    Article  ADS  Google Scholar 

  11. J.E. Siow, N.M. Laurendeau, Combust. Flame 136, 16 (2004)

    Article  Google Scholar 

  12. R.V. Ravikrishna, N.M. Laurendeau, Proc. Inst. Mech. Eng., A J. Power Energy 217, 529 (2003)

    Article  Google Scholar 

  13. C.D. Carter, J.T. Salmon, G.B. King, N.M. Laurendeau, Appl. Opt. 26, 4551 (1987)

    Article  ADS  Google Scholar 

  14. P. Desgroux, E. Domingues, M.-J. Cottereau, Appl. Opt. 31, 2831 (1992)

    Article  ADS  Google Scholar 

  15. C.D. Carter, N.M. Laurendeau, Appl. Phys. B 58, 519 (1994)

    Article  ADS  Google Scholar 

  16. P. Andresen, H. Schlüter, D. Wolff, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, Appl. Opt. 31, 7684 (1992)

    Article  ADS  Google Scholar 

  17. M. Mansour, Y.-C. Chen, Exp. Therm. Fluid Sci. 32, 1390 (2008)

    Article  Google Scholar 

  18. A.A. Konnov, M. Idir, J.-L. Delfau, C. Vovelle, Combust. Flame 105, 308 (1996)

    Article  Google Scholar 

  19. A. Fayoux, K. Zähringer, O. Gicquel, J.C. Rolon, Proc. Combust. Inst. 30, 251 (2005)

    Article  Google Scholar 

  20. J.-I. Kim, J.Y. Hwang, J. Lee, M. Choi, S.H. Chung, Int. J. Heat Mass Transf. 48, 75 (2005)

    Article  Google Scholar 

  21. A.E. Lutz, R.J. Kee, J.F. Grcar, F.M. Rupley, Sandia National Laboratory report No SAND96-8243 (1997)

  22. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner et al., GRImech3.0 mechanism (1999). http://www.me.berkeley.edu/gri_mech/

  23. E.C. Rea, A.Y. Chang, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transf. 41, 29 (1989)

    Article  ADS  Google Scholar 

  24. S.M. Hwang, J.N. Kojima, Q.-V. Nguyen, M.J. Rabinowitz, J. Quant. Spectrosc. Radiat. Transf. 109, 2715 (2008)

    Article  ADS  Google Scholar 

  25. A. Bresson, Ph.D. thesis, Université de Rouen, France (2000)

  26. A. Bülter, U. Lenhard, U. Rahmann, K. Kohse-Höinghaus, B. Andreas, in LASKIN, Laser Applications to Chemical and Environmental Analysis (LACEA), Annapolis, Maryland (Etats-Unis) (2004)

    Google Scholar 

  27. R. Schwarzwald, P. Monkhouse, J. Wolfrum, Chem. Phys. Lett. 142, 15 (1987)

    Article  ADS  Google Scholar 

  28. M. Tsujishita, A. Hirano, Appl. Phys. B, Lasers Opt. 62, 255 (1996)

    Article  ADS  Google Scholar 

  29. N.L. Garland, D.R. Crosley, Proc. Combust. Inst. 21, 1693 (1986)

    Google Scholar 

  30. P.H. Paul, J. Quant. Spectrosc. Radiat. Transf. 51, 511 (1994)

    Article  ADS  Google Scholar 

  31. R.P. Lucht, R.C. Peterson, N.M. Laurendeau, Purdue University report No PURDU-CL-78-06 (1978)

  32. J.C. Rolon, Ph.D. thesis, Ecole Centrale Paris, France (1988)

  33. N. Bouvet, Ph.D. thesis, Université d’Orléans, France (2009)

  34. J. Luque, D.R. Crosley, LIFBASE, SRI International Report MP 99-009 (1999)

  35. R.J. Cattolica, Sandia National Laboratory report No SAND79-8717 (1979)

  36. R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller, PREMIX, Sandia National Laboratory Report SAND85-8240 (1985)

  37. M. Nadler, W.E. Kaskan, J. Quant. Spectrosc. Radiat. Transf. 10, 25 (1970)

    Article  ADS  Google Scholar 

  38. R. Engleman, J. Quant. Spectrosc. Radiat. Transf. 9, 391 (1969)

    Article  ADS  Google Scholar 

  39. E. Domingues, M.-J. Cottereau, D.A. Feikema, Int. J. Energ. Mater. Chem. Propuls. 3, 167 (1994)

    Google Scholar 

  40. J. Biet, J.-L. Delfau, L. Pillier, C. Vovelle, in Proc. of the European Combustion Meeting, Chania, Greece, 11–13 April (2007)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Région Centre and the ANR program BLAN08-3-350752. The authors are very grateful to Dr. C. Vovelle and Dr. J.-L. Delfau for their precious contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pillier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matynia, A., Idir, M., Molet, J. et al. Absolute OH concentration profiles measurements in high pressure counterflow flames by coupling LIF, PLIF, and absorption techniques. Appl. Phys. B 108, 393–405 (2012). https://doi.org/10.1007/s00340-012-4959-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-4959-z

Keywords

Navigation