Skip to main content
Log in

Emission characteristics of Dy3+ ions in lead antimony borate glasses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Glasses with the composition 30PbO–25Sb2O3–(45−x)B2O3xDy2O3 for x=0 to 1 were prepared in steps of 0.2 by the melt-quenching method. Various physical parameters, viz., density, molar volume, and oxygen packing density, were evaluated. Optical absorption and luminescence spectra of all the glasses were recorded at room temperature. From the observed absorption edges optical band gap, the Urbach energies are calculated; the optical band gap is found to decrease with the concentration of Dy2O3. The Judd–Ofelt theory was applied to characterize the absorption and luminescence spectra of Dy3+ ions in these glasses. Following the luminescence spectra, various radiative properties, like transition probability A, branching ratio β and the radiative life time τ for different emission levels of Dy3+ ions, have been evaluated. The radiative lifetime for the 4F9/2 multiplet has also been evaluated from the recorded life time decay curves, and the quantum efficiencies were estimated for all the glasses. The quantum efficiency is found to increase with the concentration of Dy2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.V. Ratnam, M. Jayasimhadri, K. Jang, H.S. Lee, J. Am. Ceram. Soc. 93, 3857 (2010)

    Article  Google Scholar 

  2. I.M. Nagpure, V.B. Pawade, S. Dhoble, J. Lumin. 25, 9 (2010)

    Google Scholar 

  3. R. Martínez-Martínez, A.C. Lira, A. Speghini, C. Falcony, U. Caldiño, J. Alloys Compd. 509, 3160 (2011)

    Article  Google Scholar 

  4. L.H. Cheng, X.P. Li, J.S. Sun, H.Y. Zhong, Y. Tian, J. Wan, W.L. Lu, Y.F. Zheng, T.T. Yu, L.B. Huang, H.Q. Yu, B.J. Chen, Physica B 405, 4457 (2010)

    Article  ADS  Google Scholar 

  5. Y.N. Xue, F. Xiao, Q.Y. Zhang, Z.H. Jiang, J. Rare Earths 27, 753 (2009)

    Article  Google Scholar 

  6. Y. Fang, W.D. Zhuang, Y.S. Hu, X.W. Huang, J. Alloys Compd. 455, 420 (2008)

    Article  Google Scholar 

  7. K.N. Shinde, S.J. Dhoble, A. Kumar, J. Lumin. 131, 931 (2011)

    Article  Google Scholar 

  8. R. Zhang, X. Wang, J. Alloys Compd. 509, 1197 (2011)

    Article  Google Scholar 

  9. V.B. Rao, K.W. Jang, H.S. Lee, S.S. Yi, J.H. Jeong, J. Alloys Compd. 496, 251 (2010)

    Article  Google Scholar 

  10. K. Wei, D.P. Machewirth, J. Wenzel, E. Snitzer, G.H. Sigel, Opt. Lett. 19, 904 (1994)

    Article  ADS  Google Scholar 

  11. I.V. Kityk, A. Majchrowski, Opt. Mater. 25, 33 (2004)

    Article  ADS  Google Scholar 

  12. K. Terashima, T. Hashimoto, T. Uchino, S. Kim, T. Yoko, J. Ceram. Soc. Jpn. 104, 1008 (1996)

    Article  Google Scholar 

  13. Y. Hinatsu, H. Ebisawa, Y. Doi, J. Solid State Chem. 182, 1694 (2009)

    Article  ADS  Google Scholar 

  14. M.J. Weber, R. Cropp, J. Non-Cryst. Solids 4, 137 (1981)

    Article  ADS  Google Scholar 

  15. K.J. Rao, Structural Chemistry of Glasses (Elsevier, Amsterdam, 2002)

    Google Scholar 

  16. G. Srinivasarao, N. Veeraiah, J. Solid State Chem. 166, 104 (2002)

    Article  ADS  Google Scholar 

  17. T. Satyanarayana, I.V. Kityk, M. Piasecki, P. Bragiel, M.G. Brik, Y. Gandhi, N. Veeraiah, J. Phys., Condens. Matter 21, 245104 (2009)

    Article  ADS  Google Scholar 

  18. W.T. Carnall, P.R. Fields, K. Rajak, J. Chem. Phys. 49, 4424 (1968)

    Article  ADS  Google Scholar 

  19. B.R. Judd, Phys. Rev. 127, 750 (1962)

    Article  ADS  Google Scholar 

  20. G.S. Ofelt, J. Chem. Phys. 37, 511 (1962)

    Article  ADS  Google Scholar 

  21. P. Babu, C.K. Jayasankar, Physica B 279, 262 (2009)

    Article  ADS  Google Scholar 

  22. S. Surendra Babu, P. Babu, C.K. Jayasankar, W. Sievers, Th. Troster, G. Wortmann, J. Lumin. 126, 109 (2007)

    Article  Google Scholar 

  23. B. Dubois, J.J. Videau, J. Portier, J. Non-Cryst. Solids 88, 355 (1986)

    Article  ADS  Google Scholar 

  24. P.J. Miller, C.A. Cody, Spectrochim. Acta A 38, 555 (1982)

    Article  ADS  Google Scholar 

  25. D. Holland, A.C. Hannon, M.E. Smith, C.E. Johnson, M.F. Thomas, A.M. Beesley, Solid State NMR 26, 172 (2004)

    Article  Google Scholar 

  26. C. Hirayama, F.E. Camp, N.T. Melamid, K.B. Steinbruegge, J. Non-Cryst. Solids 6, 342 (1971)

    Article  ADS  Google Scholar 

  27. M. Rozanski, K. Wisniewski, J. Szatkowski, Cz. Koepke, M. Sroda, Opt. Mater. 31, 548 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author (B. Appa Rao) is thankful to Department of Science and Technology, Govt. India for supporting the work under OU-DST-PURSE program. M.G. Brik appreciates the support from the European Union through the European Regional Development Fund (Centre of Excellence “Mesosystems: Theory and Applications”, TK114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Appa Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandra Shekhar Reddy, M., Appa Rao, B., Brik, M.G. et al. Emission characteristics of Dy3+ ions in lead antimony borate glasses. Appl. Phys. B 108, 455–461 (2012). https://doi.org/10.1007/s00340-012-4983-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-4983-z

Keywords

Navigation