Skip to main content
Log in

Simultaneous measurement of localized heat release with OH/CH2O-LIF imaging and spatially integrated OH chemiluminescence in turbulent swirl flames

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The in-situ and localized observation of heat release in turbulent flames is important for the validation of computational modeling of turbulent flows with combustion. In the present work we obtain localized information on heat release rate (HRR) by the commonly accepted technique of the simultaneous and single-shot planar imaging of OH and CH2O concentrations by laser-induced fluorescence (LIF). Additionally, we combine this with the simultaneous line-of-sight and temporally resolved chemiluminescence detection of OH, spatially integrated within the flame volume, interrogated by the laser sheets used for the HRR imaging technique. The combined diagnostic methods are demonstrated for a swirl-stabilized, premixed turbulent methane/air flame of 30-kW thermal power, and they show the existence of correlations between both HRR-sensitive diagnostic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.G. Gaydon, H.G. Wolfhard, Flames: Their Structure, Radiation, and Temperature (Chapman and Hall, London, 1978)

    Google Scholar 

  2. N. Docquier, S. Belhalfaoui, F. Lacas, N. Darabiha, C. Rolon, Proc. Combust. Inst. 28, 1765 (2000)

    Article  Google Scholar 

  3. T.S. Cheng, C.-Y. Wu, Y.-H. Li, Y.-C. Chao, Combust. Sci. Technol. 178, 1821 (2006)

    Article  Google Scholar 

  4. V.N. Nori, J.M. Seitzman, in 45th AIAA Aerospace Sciences Meet. Exhib., Reno, NV (2007)

    Google Scholar 

  5. J.G. Lee, D.A. Santavicca, J. Propuls. Power 19, 735 (2003)

    Article  Google Scholar 

  6. F.V. Tinaut, M. Reyes, B. Giménez, J.V. Pastor, Energy Fuels 25, 119 (2011)

    Article  Google Scholar 

  7. Y. Hardalupas, M. Orain, Combust. Flame 139, 188 (2004)

    Article  Google Scholar 

  8. Y. Hardalupas, C.S. Panoutsos, A.M.K.P. Taylor, Exp. Fluids 49, 883 (2010)

    Article  Google Scholar 

  9. J.-M. Samaniego, F.N. Egolfopoulos, C.T. Bowman, Combust. Sci. Technol. 109, 183 (1995)

    Article  Google Scholar 

  10. T. Lieuwen, Y. Neumeier, Proc. Combust. Inst. 29, 99 (2002)

    Article  Google Scholar 

  11. B.O. Ayoola, R. Balachandran, J.H. Frank, E. Mastorakos, C.F. Kaminski, Combust. Flame 144, 1 (2006)

    Article  Google Scholar 

  12. R. Sadanandan, W. Meier, J. Heinze, Appl. Phys. B (2011). doi:10.1007/s00340

    MATH  Google Scholar 

  13. M. Lauer, T. Sattelmayer, J. Eng. Gas Turbines Power 132, 061502 (2010)

    Article  Google Scholar 

  14. H.N. Najm, O.M. Knio, P.H. Paul, P.S. Wyckoff, Combust. Sci. Technol. 140, 369 (1998)

    Article  Google Scholar 

  15. H.N. Najm, P.H. Paul, C.J. Mueller, P.S. Wyckhoff, Combust. Flame 113, 312 (1998)

    Article  Google Scholar 

  16. J.E. Rehm, P.H. Paul, Proc. Combust. Inst. 28, 1775 (2000)

    Article  Google Scholar 

  17. P.H. Paul, H.N. Najm, Proc. Combust. Inst. 27, 43 (1998)

    Google Scholar 

  18. A. Fayoux, K. Zähringer, O. Gicquel, J.C. Rolon, Proc. Combust. Inst. 30, 251 (2005)

    Article  Google Scholar 

  19. S. Böckle, J. Kazenwadel, T. Kunzelmann, D.-I. Shin, C. Schulz, J. Wolfrum, Proc. Combust. Inst. 28, 279 (2000)

    Article  Google Scholar 

  20. R.L. Gordon, A.R. Masri, E. Mastorakos, Combust. Theory Model. 13, 645 (2009)

    Article  ADS  Google Scholar 

  21. R.L. Gordon, A.R. Masri, E. Mastorakos, Combust. Flame 155, 181 (2008)

    Article  Google Scholar 

  22. R.L. Gordon, C. Heeger, A. Dreizler, Appl. Phys. B 96, 745 (2009)

    Article  ADS  Google Scholar 

  23. T. Landenfeld, A. Kremer, E.P. Hassel, J. Janicka, T. Schäfer, J. Kazenwadel, C. Schulz, J. Wolfrum, Proc. Combust. Inst. 27, 1023 (1998)

    Google Scholar 

  24. http://www.sandia.gov/TNF/abstract.html Int. Workshop measurement and computation of nonpremixed turbulent flames, Sandia National Laboratories (2010)

  25. A.C. Eckbreth, Laser Diagnostics for Combustion, Temperature and Species (Taylor & Francis, London, 1996)

    Google Scholar 

  26. A. Brockhinke, J. Krüger, M. Heusing, M. Letzgus, Appl. Phys. B (2012, in press)

  27. C. Schneider, Dissertation, Technical University Darmstadt, Darmstadt (2003)

Download references

Acknowledgements

The authors acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) within the collaborative program ‘Chemiluminescence and heat release’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Röder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röder, M., Dreier, T. & Schulz, C. Simultaneous measurement of localized heat release with OH/CH2O-LIF imaging and spatially integrated OH chemiluminescence in turbulent swirl flames. Appl. Phys. B 107, 611–617 (2012). https://doi.org/10.1007/s00340-012-4990-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-4990-0

Keywords

Navigation