Skip to main content
Log in

Tomographic reconstruction of 2D-OH-chemiluminescence distributions in turbulent diffusion flames

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A recently developed fast tomographic reconstruction device (Anikin et al. in Appl. Phys. B 100:675, 2010) has been applied to detect 2-D chemiluminescence distributions of OH in reaction zones of a near laminar and a turbulent diffusion flame. A series of single-shot experiments has been carried out in both flames offering cold gas flow velocities of 0.43 m/s and 4 m/s and flame diameters up to 60 mm, respectively.

The emission of OH-chemiluminescence originating from the reaction zones of the flame fronts was registered by ten Kepler-telescopes surrounding the object under investigation at different pre-defined angles. The signals emerging from each telescope are collected by a fiber cable consisting of 90 single fibers arranged side by side in a single row, respectively. The signals originating from the ten cables/10×90=900 fibers represent the corresponding Radon transforms. These signals are imaged by a relay-optics onto the photocathode of a single image intensified CCD-camera. The output data of the camera are used for the reconstructions of the 2D-distributions of OH-emission using a numerical procedure solving the inverse problem of tomography (Anikin et al. in Appl. Phys. B 100:675, 2010, and references therein). From the experimental results it is shown that the reconstructions obtained at exposure times down to 200 μs reproduce fine structures of the flames with a spatial resolution of ∼1 mm. Therefore, the method is a useful tool for the detailed investigation of turbulent combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Anikin, R. Suntz, H. Bockhorn, Appl. Phys. B 100, 675 (2010)

    Article  ADS  Google Scholar 

  2. A.G. Gaydon, The Spectroscopy of Flames (Chapman and Hall, London, 1974)

    Book  Google Scholar 

  3. T. Clark, D. Bittker, National Advisory Committee for Aeronautics, Lewis Flight Propulsion Laboratory Cleveland, Ohio, RM E54F29 (1954)

  4. T. Clark, NACA Technical Note 4266, National Advisory Committee for Aeronautics, Lewis Flight Propulsion Laboratory Cleveland, Ohio, RM E54F29 (1958)

  5. Y. Hardalupas, M. Orain, Combust. Flame 139, 188 (2004)

    Article  Google Scholar 

  6. N. Docquier, S. Candel, Prog. Energy Combust. Sci. 28, 107 (2002)

    Article  Google Scholar 

  7. S. Candel, Proc. Combust. Inst. 29, 1 (2002)

    Article  Google Scholar 

  8. B. Higgins, M.Q. McQuay, F. Lacas, S. Candel, Fuel 80, 1583 (2001)

    Article  Google Scholar 

  9. T. Chou, D.J. Patterson, Combust. Flame 101, 45 (1995)

    Article  Google Scholar 

  10. I. Hurle, R. Price, T. Sugden, A. Thomas, Proc. R. Soc. 303, 409 (1968)

    Article  ADS  Google Scholar 

  11. R. Balachandran, B.O. Ayoola, C.F. Kaminski, A.P. Dowling, E. Mastorakos, Combust. Flame 143, 37 (2005)

    Article  Google Scholar 

  12. B.O. Ayoola, R. Balachandran, J.H. Frank, E. Mastorakos, C.F. Kaminski, Combust. Flame 144, 1 (2006)

    Article  Google Scholar 

  13. P. Karaunen, S. Andersson-Engles, S. Svanberg, Appl. Phys. B 53, 260 (1991)

    Article  ADS  Google Scholar 

  14. F. Akamatsu, T. Wakabayashi, S. Tsushima, M. Katsuki, Y. Mizutani, Y. Ikeda, N. Kawahara, T. Nakajima, Meas. Sci. Technol. 10, 1240 (1999)

    Article  ADS  Google Scholar 

  15. J. Kojima, Y. Ikeda, T. Nakajima, Proc. Combust. Inst. 28, 1757 (2000)

    Article  Google Scholar 

  16. Y. Ikeda, J. Kojima, T. Nakajima, F. Akamatsu, M. Katsuki, Proc. Combust. Inst. 28, 343 (2000)

    Article  Google Scholar 

  17. Y. Ikeda, J. Kojima, H. Hashimoto, Proc. Combust. Inst. 29, 1495 (2002)

    Article  Google Scholar 

  18. J. Kojima, Y. Ikeda, T. Nakajima, Meas. Sci. Technol. 14, 1714 (2003)

    Article  ADS  Google Scholar 

  19. P.G. Aleiferis, Y. Hardalupas, A.M.K.P. Taylor, K. Ishii, Y. Urata, Combust. Flame 136, 72 (2004)

    Article  Google Scholar 

  20. Y. Hardalupas, M. Orain, C.S. Panoutsos, Appl. Therm. Eng. 24, 1619 (2004)

    Article  Google Scholar 

  21. M. Orain, Y. Hardalupas, C. R., Méc. 338, 241 (2010)

    Google Scholar 

  22. C.J. Dasch, Appl. Opt. 31, 1146 (1992)

    Article  ADS  Google Scholar 

  23. J. Hentschel, R. Suntz, H. Bockhorn, Appl. Opt. 44, 6673 (2005)

    Article  ADS  Google Scholar 

  24. G. Herding, R. Snyder, C. Rolon, S. Candel, J. Propuls. Power 13, 146 (1998)

    Article  Google Scholar 

  25. D. Kendrick, G. Herding, P. Scouflaire, J.C. Rolon, S. Candel, Combust. Flame 118, 327 (1999)

    Article  Google Scholar 

  26. M. Juniper, A. Tripathi, P. Scouflaire, J.C. Rolon, S. Candel, Proc. Combust. Inst. 28, 1103 (2000)

    Article  Google Scholar 

  27. G. Singla, P. Scouflaire, C. Rolon, S. Candel, Proc. Combust. Inst. 30, 2921 (2005)

    Article  Google Scholar 

  28. J. Radon, Verh. Sächs. Akad. Wiss. Leipz., Math.-Nat. Kl. 69, 262 (1917)

    Google Scholar 

  29. J. Floyd, A.M. Kempf, Proc. Combust. Inst. 33, 751 (2011)

    Article  Google Scholar 

  30. H.M. Hertz, G.W. Faris, Opt. Lett. 13, 351 (1988)

    Article  ADS  Google Scholar 

  31. Y. Ishino, N. Ohiwa, JSME Int. J. Ser. B Fluids Therm. Eng. 48, 34 (2005)

    Article  ADS  Google Scholar 

  32. J. Floyd, P. Geipel, A.M. Kempf, Combust. Flame 158, 376 (2011)

    Article  Google Scholar 

  33. A.N. Tikhonov, V.A. Arsenin, Solution of Ill-posed Problems (Winston, Washington, 1977), p. 258

    Google Scholar 

  34. H. Phylaktou, G.E. Andrews, Symp., Int., Combust. 25, 103 (1994)

    Article  Google Scholar 

  35. D.D. Agrawal, Combust. Flame 42, 243 (1981)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Deutsche Forschungsgemeinschaft DFG (Paket-Forschungsantrag: “Chemilumineszenz und Wärmefreisetzung”) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Suntz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anikin, N.B., Suntz, R. & Bockhorn, H. Tomographic reconstruction of 2D-OH-chemiluminescence distributions in turbulent diffusion flames. Appl. Phys. B 107, 591–602 (2012). https://doi.org/10.1007/s00340-012-5003-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5003-z

Keywords

Navigation