Skip to main content
Log in

Preparation, thermo-optic property and simulation of optical switch based on azo benzothiazole polymer

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An azo chromophore molecule 4-[(benzothiazole-2-yl)diazenyl]phenyl-1,3-diamine (BTPD) was prepared with 2-amino benzothiazole and m-phenylenediamine by diazo-coupling reaction. Then, the chromophore molecule BTPD was polymerized with NJ-210 and isophorone diisocyanate (IPDI) to obtain novel azo benzothiazole polymer (BTPU). The structures of BTPD and BTPU were characterized using the Fourier transform infrared, UV–visible spectroscopy, DSC and TGA. The physical properties of the obtained BTPU were investigated. The refractive index (n) of BTPU was demonstrated at different temperature and wavelength (532, 650 and 850 nm) using attenuated total reflection technique. The transmission loss and dispersion characteristic of BTPU film were investigated using the CCD digital imaging devices and Sellmeyer equation. A Y-branch and 2 × 2 Mach–Zehnder interferometer (MZI) polymeric thermo-optic switches based on the thermo-optic effect of prepared BTPU were proposed and the performance of switches was simulated. The results indicated that the power consumption of the Y-branch thermo-optic switch could be only 0.6 mW. The Y-branch and MZI switching rising and falling times obtained were 8.0 and 1.8 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. F.X. Qiu, Z.L. Da, D.Y. Yang, G.R. Cao, P.P. Li, Dyes Pigments 77, 564 (2008)

    Article  Google Scholar 

  2. L. Angiolini, T. Benelli, L. Giorgini, F. Mauriello, E. Salatelli, Sensor. Actuat. B 126, 56 (2007)

    Article  Google Scholar 

  3. X. Ke, X. Yan, N. Srisanit, M. Wang, J. Yang, X. Huang, S. Zhong, Opt. Commun. 217, 69 (2003)

    Article  ADS  Google Scholar 

  4. E. Heydari, E. Mohajerani, A. Shams, Opt. Commun. 284, 1208–1212 (2011)

    Article  ADS  Google Scholar 

  5. J.H. Liu, F.X. Qiu, G.R. Cao, Y.J. Guan, Q. Shen, D.Y. Yang, Q. Guo, J. Polym. Sci. B 49, 939 (2011)

    Article  Google Scholar 

  6. F.X. Qiu, Z.J. Cao, G.R. Cao, Y.J. Guan, Q. Shen, Q. Wang, D.Y. Yang, Mater. Chem. Phys. 135, 518 (2012)

    Article  Google Scholar 

  7. D.M. Junge, D.V. McGrath, J. Am. Chem. Soc. 121, 4912 (1999)

    Article  Google Scholar 

  8. Y. Tian, K. Watanabe, X. Kong, J. Abe, T. Iyoda, Macromolecules 35, 3739 (2002)

    Article  ADS  Google Scholar 

  9. F.X. Qiu, C.H. Ge, X.X. Gu, D.Y. Yang, Int. J. Polym. Anal. Charact. 16, 36 (2011)

    Article  Google Scholar 

  10. R.H. Lambeth, J.S. Moore, Macromolecules 40, 1838 (2007)

    Article  ADS  Google Scholar 

  11. H. Yu, L.H. Wang, Z.G. Wang, X.Y. Han, M.S. Zhao, Polymer 51, 14 (2010)

    Google Scholar 

  12. J.W. Kang, J.P. Kim, W.Y. Lee, J.S. Kim, J.S. Lee, J.J. Kim, J. Lightwave Technol. 19, 872 (2001)

    Article  ADS  Google Scholar 

  13. S.H. Baek, J.W. Kang, X.D. Li, M.H. Lee, J.J. Kim, Opt. Lett. 29, 301 (2004)

    Article  ADS  Google Scholar 

  14. I. Yulianti, A.S.M. Supa’at, S.M. Idrus, A.M. Al-Hetar, Opt. Laser Technol. 42, 180 (2010)

    Article  ADS  Google Scholar 

  15. Y.O. Noh, J.M. Kim, M.S. Yang, H.J. Choi, H.J. Lee, Y.H. Won, S.G. Han, IEEE Photonic. Technol. Lett. 16, 446 (2004)

    Article  ADS  Google Scholar 

  16. Y.T. Han, J.U. Shin, S.H. Park, S.P. Han, Y. Baek, C.H. Lee, Y.O. Noh, H.H. Park, ETRI J. 33, 275 (2011)

    Article  Google Scholar 

  17. X. Wang, B. Howley, M.Y. Chen, R. Chen, IEEE Photonic. Technol. Lett. 18, 16 (2006)

    Article  ADS  Google Scholar 

  18. D.M. Yeo, S.Y. Shin, Opt. Commun. 267, 388 (2006)

    Article  ADS  Google Scholar 

  19. F.X. Qiu, D.Y. Yang, G.R. Cao, R.X. Zhang, P.P. Li, Sens. Actuat. B 135, 499 (2009)

    Article  Google Scholar 

  20. R.B. Patil, R.K. Puri, V. Puri, Appl. Surf. Sci. 255, 4272 (2009)

    Article  ADS  Google Scholar 

  21. S.J. Park, K.S. Cho, C.G. Choi, Colloid Interf. Sci. 258, 425 (2003)

    Article  Google Scholar 

  22. W. Shi, C.S. Fang, Y. Sui, J. Yin, Opt. Commun. 183, 304 (2000)

    Article  ADS  Google Scholar 

  23. J.H. Liu, F.X. Qiu, G.R. Cao, Q. Shen, Z.J. Cao, D.Y. Yang, J. Appl. Polym. Sci. 121, 2572 (2011)

    Google Scholar 

Download references

Acknowledgments

This project was supported by the Agricultural Independent Innovation of Jiangsu Province (CX(11)2032), China Postdoctoral Science Foundation (2011M500865), Jiangsu Key Laboratory for Chemistry of Low-Dimensional Material (JSKC12105) and the Innovation Program for Graduate Education of Jiangsu Province (CXZZ12_0696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengxian Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Z., Qiu, F., Wang, Q. et al. Preparation, thermo-optic property and simulation of optical switch based on azo benzothiazole polymer. Appl. Phys. B 111, 93–102 (2013). https://doi.org/10.1007/s00340-012-5311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5311-3

Keywords

Navigation