Skip to main content

Advertisement

Log in

Fluorescence spectroscopy of kerosene vapour at high temperatures and pressures: potential for gas turbines measurements

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Laser-induced fluorescence spectroscopy of kerosene vapour was performed in a heated test cell operating between 450 and 900 K, at pressure from 0.1 to 3.0 MPa, for oxygen molar fraction between 0 and 21 %, with different laser excitation wavelengths (248, 266, 282 and 308 nm). Results show that, depending on the laser excitation scheme, kerosene fluorescence spectrum exhibits one or two fluorescence bands in the UV–visible range (attributed to aromatics naturally present in kerosene fuel). Fluorescence intensity of these bands decreases with increasing temperature, pressure and oxygen molar fraction. Different imaging strategies were derived from spectroscopic findings to simultaneously measure temperature and equivalence ratio fields in kerosene/air sprays, or flame structure and fuel spatial distribution in kerosene/air aeronautical combustors, by means of planar laser-induced fluorescence on kerosene vapour (K-PLIF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C. Espey, J.E. Dec, T.A. Litzinger, D.A. Santavicca, Planar laser Rayleigh scattering for quantitative vapor-fuel imaging in a diesel jet. Combust. Flame 109, 65–86 (1997)

    Article  Google Scholar 

  2. J. Fielding, J.H. Frank, S.A. Kaiser, M.D. Smooke, M.B. Long, Polarized/depolarized Rayleigh scattering for determining fuel concentrations in flames, 29th Int. Symp. Comb., 2703–2709 (2002)

  3. R.A. Patton, K.N. Gabet, N. Jiang, W.M. Lempert, J.A. Sutton, Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering. Appl. Phys. B 106, 457–471 (2012)

    Article  ADS  Google Scholar 

  4. T.Q. Ni, L.A. Melton, Fuel equivalence ratio imaging for methane jet. Appl. Spectrosc. 47, 773–781 (1993)

    Article  ADS  Google Scholar 

  5. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements. Appl. Phys. B 80, 147–150 (2005)

    Article  ADS  Google Scholar 

  6. C. Schulz, V. Sick, Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Progr. Energy Combust. Sci 31, 75–121 (2005)

    Article  Google Scholar 

  7. A.P. Fröba, F. Rabenstein, K.U. Münch, A. Leipertz, Mixture of triethylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid inside SI engines. Combust. Flame 112, 199–209 (1998)

    Article  Google Scholar 

  8. D. Han, R.R. Steeper, An LIF equivalence ratio imaging technique for multicomponent fuels in an IC engine, 29th Int. Symp. Comb., 727–734 (2002)

  9. J.D. Smith, V. Sick, Quantitative, dynamic fuel distribution measurements in combustion-related devices using laser-induced fluorescence imaging of biacetyl in iso-octane. Proc. Combust. Inst. 31, 747–755 (2007)

    Article  Google Scholar 

  10. J.A. Drallmeier, Hydrocarbon-vapor measurements in pulsed fuel sprays. Appl. Opt. 33, 7781–7788 (1994)

    Article  ADS  Google Scholar 

  11. E. Tomita, N. Kawahara, S. Yoshiyama, A. Kakuho, T. Itoh, Y. Hamamoto, In situ fuel concentration measurement near spark plug in spark-ignition engines by 3.39 μm infrared laser absorption method, 29th Int. Symp. Comb., 735–741 (2002)

  12. H. Li, S.D. Wehe, K.R. McManus, Real-time equivalence ratio measurements in gas turbine combustors with a near-infrared diode laser sensor. Proc. Combust. Inst. 33, 717–724 (2011)

    Article  Google Scholar 

  13. T. Heinze, T. Schmidt, Fuel-air ratios in a spray, determined between injection and autoignition by pulsed spontaneous Raman spectroscopy, SAE paper, No. 892102 (1989)

  14. S. Jin, K. Park, G. Kim, Equivalence ratio measurements in vaporized fuel spray using laser Raman scattering. Int. J. Fluid Mech. Res. 24, 599–606 (1997)

    Google Scholar 

  15. P.C. Miles, Raman line imaging for spatially and temporally resolved mole fraction measurements in internal combustion engines. Appl. Opt. 38, 1714–1732 (1999)

    Article  ADS  Google Scholar 

  16. R.S. Barlow, G.H. Wang, P. Anselmo-Filho, M.S. Sweeney, S. Hochgreb, Application of Raman/Rayleigh/LIF diagnostics in turbulent stratified flames. Proc. Combust. Inst. 32, 945–953 (2009)

    Article  Google Scholar 

  17. P. Stavropoulos, A. Michalakou, G. Skevis, S. Couris, Quantitative local equivalence ratio determination in laminar premixed methane–air flames by laser induced breakdown spectroscopy (LIBS). Chem. Phys. Lett. 404, 309–314 (2005)

    ADS  Google Scholar 

  18. F. Ferioli, S.G. Buckley, Measurements of hydrocarbons using laser-induced breakdown spectroscopy. Combust. Flame 144, 435–447 (2006)

    Article  Google Scholar 

  19. S. Zhang, X. Yu, F. Li, G. Kang, L. Chen, X. Zhang, Laser induced breakdown spectroscopy for local equivalence ratio measurement of kerosene/air mixture at elevated pressure. Opt. Lasers Eng. 50, 877–882 (2012)

    Article  Google Scholar 

  20. L. Zimmer, S. Yoshida, Feasibility of laser-induced plasma spectroscopy for measurements of equivalence ratio in high-pressure conditions. Exp. Fluids 52, 891–904 (2012)

    Article  Google Scholar 

  21. Y.R. Hicks, R.J. Locke, R.C. Anderson, M. Zaller, H.J. Schock, Imaging fluorescent combustion species in gas turbine flame tubes: on complexities in real systems, AIAA Paper No 97–2837 (1997)

  22. R.J. Locke, M. Zaller, Y.R. Hicks, R.C. Anderson, Non-intrusive laser-induced imaging for speciation and patternation in high pressure gas turbine combustors, NASA/TM-1999-209395 (1999)

  23. Y.R. Hicks, R.J. Locke, R.C. Anderson, Optical measurement and visualization in high-pressure, high-temperature, aviation gas turbine combustors, NASA/TM-2000-210377 (2000)

  24. A. Arnold, R. Bombach, W. Hubschmid, A. Inauen, B. Käppeli, Fuel-oil concentration in a gas turbine burner measured with laser-induced fluorescence. Exp. Fluids 29, 468–477 (2000)

    Article  Google Scholar 

  25. K. Fujiwara, N. Omenetto, J.B. Bradshaw, J.N. Bower, J.D. Winefordner, Laser-induced fluorescence in kerosene/air and gasoline/air flames. Appl. Spectrosc. 34, 85–86 (1980)

    Article  ADS  Google Scholar 

  26. C. Löfström, H. Kaaling, M. Aldén, Visualization of fuel distributions in premixed ducts in a low-emission gas turbine combustor using laser techniques, 26th Int. Symp. Comb., 2787–2793 (1996)

  27. E. Clar, Polycyclic hydrocarbons (Academic Press, London, 1964)

    Book  Google Scholar 

  28. J.B. Birks, Photophysics of aromatic molecules (Wiley-Interscience, London, 1970)

    Google Scholar 

  29. I.B. Berlman, Handbook of fluorescence spectra of aromatic molecules (Academic Press, London, 1971)

    Google Scholar 

  30. M. Stockburger, H. Gattermann, W. Klusmann, Spectroscopic studies on naphthalene in vapor phase I. Fluorescence spectra from single vibronic levels. J. Chem. Phys. 63, 4519–4528 (1975)

    ADS  Google Scholar 

  31. M. Stockburger, H. Gattermann, W. Klusmann, Spectroscopic studies on naphthalene in vapor phase II. Fluorescence quantum yields from single vibronic levels in the first excited singlet state - behavior of higher excited singlet states. J. Chem. Phys. 63, 4529–4540 (1975)

    ADS  Google Scholar 

  32. P. Avouris, W.M. Gerlbart, M.A. El-Sayed, Nonradiative electronic relaxation under collision-free conditions. Chem. Reviews 77, 793–833 (1977)

    Article  Google Scholar 

  33. S.M. Beck, J.B. Hopkins, D.E. Powers, R.E. Smalley, Jet cooled naphthalene I. Absorption spectra and line profiles. J. Chem. Phys. 73, 2019–2028 (1980)

    ADS  Google Scholar 

  34. S.M. Beck, J.B. Hopkins, D.E. Powers, R.E. Smalley, Jet cooled naphthalene II. Single vibronic level fluorescence spectra. J. Chem. Phys. 74, 43–52 (1981)

    ADS  Google Scholar 

  35. J.A. Draeger, The methylbenzenes—I. Vapor-phase vibrational fundamentals, internal rotations and a modified valence force field. Spectrochim. Acta 41A, 607–627 (1985)

    Article  ADS  Google Scholar 

  36. M. Suto, X. Wang, J. Shan, L.C. Lee, Quantitative photoabsorption and fluorescence spectroscopy of benzene, naphthalene, and some derivatives at 106–295 nm. J. Quant. Spectrosc. Radiat. Transfer 48, 79–89 (1992)

    Article  ADS  Google Scholar 

  37. T. Etzkorn, B. Klotz, S. Sørensen, I.V. Patroescu, I. Barnes, K.H. Becker, U. Platt, Gas-phase absorption cross section of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges. Atmos. Env. 33, 525–540 (1999)

    Article  Google Scholar 

  38. M. Wartel, J.F. Pauwels, P. Desgroux, X. Mercier, Quantitative measurement of naphthalene in low-pressure flames by jet-cooled laser-induced fluorescence. Appl. Phys. B 100, 933–943 (2010)

    Article  ADS  Google Scholar 

  39. W. Koban, J.D Koch., V. Sick, N. Wermuth, R.K. Hanson, C. Schulz, Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions, 30th Int. Symp. Comb., 1545–1553 (2004)

  40. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Absorption and fluorescence of toluene vapor at elevated temperatures. Phys. Chem. Chem. Phys. 6, 2940–2945 (2004)

    Article  Google Scholar 

  41. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Oxygen quenching of toluene fluorescence at elevated temperatures. Appl. Phys. B 80, 777–784 (2005)

    Article  ADS  Google Scholar 

  42. M. Luong, R. Zhang, V. Sick, C. Schulz, Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines. Appl. Phys. B 91, 669–675 (2008)

    Article  ADS  Google Scholar 

  43. M. Orain, P. Baranger, B. Rossow, F. Grisch, Fluorescence spectroscopy of 1,2,4-trimethylbenzene at high temperatures and pressures: application to temperature measurements. Appl. Phys. B 100, 945–952 (2010)

    Article  ADS  Google Scholar 

  44. S.A. Kaiser, M.B. Long, Quantitative planar laser-induced fluorescence of naphthalenes as fuel tracers, 30th Int. Symp. Comb., 1555–1563 (2004)

  45. F. Ossler, T. Metz, M. Aldén, Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures. I. Cell Meas. Appl. Phys. B 72, 465–478 (2001)

    Article  ADS  Google Scholar 

  46. F. Ossler, T. Metz, M. Aldén, Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures. II. Flame seeding measurements. Appl. Phys. B 72, 479–489 (2001)

    Article  ADS  Google Scholar 

  47. M. Orain, P. Baranger, B. Rossow, F. Grisch, Fluorescence spectroscopy of naphthalene at high temperatures and pressures: implication for fuel-concentration measurements. Appl. Phys. B 102, 163–172 (2011)

    Article  ADS  Google Scholar 

  48. S. Faust, G. Tea, T. Dreier, C. Schulz, Temperature, pressure, and bath gas composition dependence of fluorescence spectra and fluorescence lifetimes of toluene and naphthalene. Appl. Phys. B 110, 81–93 (2013)

    Article  ADS  Google Scholar 

  49. M. Kühni, C. Morin, P. Guibert, Fluoranthene laser-induced fluorescence at elevated temperatures and pressures: implications for temperature-imaging diagnostics. Appl. Phys. B 102, 659–671 (2011)

    Article  ADS  Google Scholar 

  50. J.D. Koch, R.K. Hanson, Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for PLIF applications. Appl. Phys. B 76, 319–324 (2003)

    Article  ADS  Google Scholar 

  51. M.C. Thurber, F. Grisch, B.J. Kirby, M. Votsmeier, R.K. Hanson, Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics. Appl. Opt. 37, 4963–4978 (1998)

    Article  ADS  Google Scholar 

  52. P. Baranger, Détection du kérosène par imagerie de fluorescence induite par laser, pour application sur foyer aéronautique, PhD thesis, Paris XI University, France (2004)

  53. C. Ledier, Application de la LIF de molécules aromatiques au dosage de carburants fossiles et biocarburants, PhD thesis, Paris XI University, France (2011)

  54. C. Guéret, M. Cathonnet, J.C. Boettner, F. Gaillard, Experimental study and modelling of kerosene oxidation in a jet-stirred flow reactor, 23th Int. Symp. Comb., 211–216 (1990)

  55. F. Cignoli, G. Zizak, S. Benecchi, D. Tencalla, Atlas of fluorescence spectra of aromatic hydrocarbons, http://www.tempe.mi.cnr.it/zizak/atlas/cld-atlas-eng.htm

  56. M. Lu, J.A. Mulholland, PAH growth from the pyrolysis of CPD, indene and naphthalene mixture. Chemosphere 55, 605–610 (2004)

    Article  Google Scholar 

  57. B. Shukla, M. Koshi, A novel route for PAH growth in HACA based mechanisms. Combust. Flame 159, 3589–3596 (2012)

    Article  Google Scholar 

  58. V. Sick, N. Wermuth, Single-shot imaging of OH radicals and simultaneous OH radical/acetone imaging with a tunable Nd:YAG laser. Appl. Phys. B 79, 139–143 (2004)

    Article  Google Scholar 

  59. N.T. Clemens, P.H. Paul, Effects of heat release on the near field flow structure of hydrogen jet diffusion flames. Combust. Flame 102, 271–284 (1995)

    Article  Google Scholar 

  60. M. Mosburger, V. Sick, Single laser detection of CO and OH via laser-induced fluorescence. Appl. Phys. B 99, 1–6 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partly sponsored by the Direction Générale de l’Armement (DGA), French Ministry of Defense with S. Cueille as program monitor. We also thank ONERA for funding PhD bursaries for three of the co-authors (P. Baranger, C. Ledier and J. Apeloig). Finally, we are grateful to B. Attal-Trétout and D. Gauyacq for their assistance in various phases of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Orain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orain, M., Baranger, P., Ledier, C. et al. Fluorescence spectroscopy of kerosene vapour at high temperatures and pressures: potential for gas turbines measurements. Appl. Phys. B 116, 729–745 (2014). https://doi.org/10.1007/s00340-013-5756-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5756-z

Keywords

Navigation