Skip to main content
Log in

A new method for the determination of optical band gap and the nature of optical transitions in semiconductors

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A new method (named as DASF: Derivation of absorption spectrum fitting) is proposed for the determination of optical band gap and the nature of optical transitions in semiconductors; this method only requires the measurement of the absorbance spectrum of the sample, avoiding any needs to film thickness or any other parameters. In this approach, starting from absorption spectrum fitting (ASF) procedure and by the first derivation of the absorbance spectrum, the optical band gap and then the type of optical transition can be determined without any presumption about the nature of transition. DASF method was employed on (60−x)V2O5–40TeO2–xAg2O glassy systems (hereafter named as TVAgx), in order to confirm the validity of this new method. For the present glasses, the DASF results were compared with the results of ASF procedure for, confirming a very good agreement between these approaches. These glasses were prepared by using the melt quenching and blowing methods to obtain bulk and film samples, respectively. Results show that the optical band gap variation for TVAgx glasses can be divided into two regions, 0 ≤ x ≤ 20 and 20 ≤ x ≤ 40 mol%. The optical band gap has a maximum value equal to 2.72 eV for x = 40 and the minimum value equal to 2.19 eV for x = 40. Also, some physical quantities such as the width of the band tails (Urbach energy), glass density, molar volume, and optical basicity were reported for the under studied glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Souri, J. Phys. D Appl. Phys. 41, 105102 (2008)

    Article  ADS  Google Scholar 

  2. D. Souri, M. Elahi, Phys. Scr. 75(2), 219–226 (2007)

    Article  ADS  Google Scholar 

  3. D. Souri, M. Elahi, M.S. Yazdanpanah, Cent. Eur. J. Phys. 6(2), 306–310 (2008)

    Article  Google Scholar 

  4. D. Souri, S.A. Salehizadeh, J. Mater. Sci. 44, 5800–5805 (2009)

    Article  ADS  Google Scholar 

  5. B.V.R. Chowdari, P.P. Kumari, J. Phys. Chem. Solids 58(3), 515–525 (1997)

    Article  ADS  Google Scholar 

  6. M. Pal, K. Hirota, Y. Tsujigami, H. Sakata, J. Phys. D Appl. Phys. 34, 459–464 (2001)

    Article  ADS  Google Scholar 

  7. B.K. Sharma, D.C. Dube, A. Mansingh, J. Non-Cryst. Solids 65, 39–51 (1984)

    Article  ADS  Google Scholar 

  8. G.S. Murugan, Y. Ohishi, J. Non-Cryst. Solids 341, 86–92 (2004)

    Article  Google Scholar 

  9. S. Jayaseelan, P. Muralidharan, M. Venkateswarlu, N. Satyanarayana, Mater. Sci. Eng. B 118, 136–143 (2005)

    Article  Google Scholar 

  10. J. Lin, W. Huang, Z. Sun, C.S. Ray, D. Day, J. Non-Cryst. Solids 336, 189–194 (2004)

    Article  ADS  Google Scholar 

  11. S.V.G.V.A. Prasad, M.S. Reddy, N. Veeraiah, J. Phys. Chem. Solids 67, 2478–2488 (2006)

    Article  ADS  Google Scholar 

  12. A.A. El-Moneim, Mater. Chem. Phys. 73, 318–322 (2002)

    Article  Google Scholar 

  13. R.N. Sinclair, A.C. Wright, B. Bachra, Y.B. Dimitriev, V.V. Dimitriov, M.G. Arnaudov, J. Non-Cryst. Solids 232–234, 38–43 (1998)

    Article  Google Scholar 

  14. N. Chopra, A. Mansingh, G.K. Chadha, J. Non-Cryst. Solids 126, 194–201 (1990)

    Article  ADS  Google Scholar 

  15. A. Mansingh, V.K. Dhawan, J. Phys. C: Solid State Phys. 16, 1675–1686 (1983)

    Article  ADS  Google Scholar 

  16. S. Sakida, S. Hayakawa, T. Yoko, J. Phys.: Condens. Matter 12, 2579–2595 (2000)

    ADS  Google Scholar 

  17. Y. Dimitriev, Y. Ivanova, M. Dimitrov, E.D. Lefterova, P.V. Angelov, J. Mater. Sci. Lett. 19(17), 1513–1516 (2000)

    Article  Google Scholar 

  18. M.M. El-Desoky, M.S. Al-Assiri, Mater. Sci. Eng. B 137, 237–246 (2007)

    Article  Google Scholar 

  19. P. Rozier, A. Burian, G.J. Cuello, J. Non-Cryst. Solids 351, 632–639 (2005)

    Article  ADS  Google Scholar 

  20. S. Szu, F. Chang, Solid State Ion. 176, 2695–2699 (2005)

    Article  Google Scholar 

  21. M.M. El-Desoky, J. Non-Cryst. Solids 351, 3139–3146 (2005)

    Article  ADS  Google Scholar 

  22. R. El-Mallawany, N. El-Khoshkhany, H. Afifi, Mater. Chem. Phys. 95, 321–327 (2006)

    Article  Google Scholar 

  23. V. Rajendran, N. Palanivelu, B.K. Chaudhuri, K. Goswami, J. Non- Cryst. Solids 320, 195–209 (2003)

    Article  ADS  Google Scholar 

  24. S. Gupta, A. Mansingh, Philos. Mag. Part B 78(3), 265–277 (1998)

    Article  ADS  Google Scholar 

  25. G. Turky, M. Dawy, Mater. Chem. Phys. 77, 48–59 (2002)

    Article  Google Scholar 

  26. N.F. Mott, E.A. Davis, Electronic process in non-crystalline materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  27. J. Tauc, A. Menth, J. Non- Cryst. Solids 8–10, 569–585 (1972)

    Article  Google Scholar 

  28. D. Souri, K. Shomalian, J. Non-Cryst. Solids 355, 1597–1601 (2009)

    Article  ADS  Google Scholar 

  29. D. Souri, Measurement 44, 717–721 (2011)

    Article  Google Scholar 

  30. D. Souri, M. Mohammadi, H. Zaliani, Electron. Mater. Lett. 10(6), 1103–1108 (2014)

    Article  ADS  Google Scholar 

  31. L.E. Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rudil, E.V. Santiago, Appl. Surf. Sci. 254, 412–415 (2007)

    Article  ADS  Google Scholar 

  32. S. Sindhu, S. Sanghi, A. Argawal, S.V.P. Sonam, N. Kishore, Phys. B 365, 65 (2005)

    Article  ADS  Google Scholar 

  33. R.P.S. Chakradar, G. Sivaramaiah, R. Lakshmana, N.O. Gopal, Spectrochim. Acta, Part A 62, 761 (2005)

    Article  ADS  Google Scholar 

  34. S. Sindu, S. Sanghi, A. Agarwal, V.P. Seth, N. Kishore, Mater. Chem. Phys. 90, 83–89 (2005)

    Article  Google Scholar 

  35. V. Dimitrov, T. Komatsu, J. Solid State Chem. 178, 831–846 (2005)

    Article  ADS  Google Scholar 

  36. A. Lebouteiller, P. Courtine, J. Solid State Chem. 137, 94–103 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Souri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souri, D., Tahan, Z.E. A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl. Phys. B 119, 273–279 (2015). https://doi.org/10.1007/s00340-015-6053-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6053-9

Keywords

Navigation