Skip to main content
Log in

Fundamental laser modes in paraxial optics: from computer algebra and simulations to experimental observation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We study multi-parameter solutions of the inhomogeneous paraxial wave equation in a linear and quadratic approximation which include oscillating laser beams in a parabolic waveguide, spiral light beams, and other important families of propagation-invariant laser modes in weakly varying media. A “smart” lens design and a similar effect of superfocusing of particle beams in a thin monocrystal film are also discussed. In the supplementary electronic material, we provide a computer algebra verification of the results presented here, and of some related mathematical tools that were stated without proofs in the literature. We also demonstrate how computer algebra can be used to derive some of the presented formulas automatically, which is highly desirable as the corresponding hand calculations are very tedious. In numerical simulations, some of the new solutions reveal quite exotic properties which deserve further investigation including an experimental observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. From now on, we abbreviate \(\alpha _{0}=\alpha (0),\) etc for the sake of compactness.

  2. Both Eqs. (3.24) and (3.26), are obviously invariant under plane rotations.

  3. The package can be downloaded from http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/.

References

  1. D. Abdollahpour, S. Suntsov, D.G. Papazoglou, S. Tzortzakis, Spatiotemporal Airy light bullets in the linear and nonlinear regimes. Phys. Rev. Lett. 105(25), 253901 (2010)

    Article  ADS  Google Scholar 

  2. E.G. Abramochkin, unpublished manuscript (in Russian)

  3. E.G. Abramochkin, T. Alieva, J.A. Rodrigo, Solutions of paraxial equations and families of Gaussian beams, in Mathematical Optics: Classical, Quantum, and Computational Methods, ed. by V. Lakshmianrayanan, M.L. Calvo, T. Alieva (CRC Press, Boca Raton, 2013), pp. 143–192

    Google Scholar 

  4. E.G. Abramochkin, E. Razueva, Product of three Airy beams. Opt. Lett. 36(19), 3732–3734 (2011)

    Article  ADS  Google Scholar 

  5. E.G. Abramochkin, V.G. Volostnikov, Two-dimensional phase problem: differential approach. Opt. Commun. 74(3), 139–143 (1989)

    Article  ADS  Google Scholar 

  6. E.G. Abramochkin, V.G. Volostnikov, Relationship between two-dimensional intensity and phase in a Fresnel diffraction zone. Opt. Commun. 74(3), 144–148 (1989)

    Article  ADS  Google Scholar 

  7. E.G. Abramochkin, V.G. Volostnikov, Beam transformations and nontransformed beams. Opt. Commun. 83(1–2), 123–135 (1991)

    Article  ADS  Google Scholar 

  8. E.G. Abramochkin, V.G. Volostnikov, Spiral light beams. Phys. Uspekhi 47(12), 1177–1203 (2004)

    Article  ADS  Google Scholar 

  9. E.G. Abramochkin, V.G. Volostnikov, Modern Optics of Gaussian Beams (FizMatLit, Moscow, 2010). (in Russian)

    Google Scholar 

  10. G.P. Agrawal, A.K. Ghatak, C.L. Mehtav, Propagation of a partially coherent beam through selfoc fibers. Opt. Commun. 12(3), 333–337 (1974)

    Article  ADS  Google Scholar 

  11. S.A. Akhmanov, Y.E. Dyakov, A.S. Chirkin, An Introduction to Statistical Radiophysics and Optics (Nauka, Moscow, 1981). (in Russian)

    Google Scholar 

  12. S.A. Akhmanov, S.Y. Nikitin, Physical Optics (Clarendon Press, Oxford, 1997)

    Google Scholar 

  13. C. Ament, P. Polynkin, J.V. Moloney, Supercontinuum generation with femtosecond self-healing Airy pulses. Phys. Rev. Lett. 107(24), 243901 (2011)

    Article  ADS  Google Scholar 

  14. M.A. Bandres, Accelerating beams. Opt. Lett. 34(24), 3791–3793 (2009)

    Article  ADS  Google Scholar 

  15. M.A. Bandres, J.C. Gultiérrez-Vega, Airy-Gauss beams and their transformation by paraxial optical systems. Opt. Express 15(25), 16719–16728 (2007)

    Article  ADS  Google Scholar 

  16. M.A. Bandres, M. Guizar-Sicairos, Paraxial group. Opt. Lett. 34(1), 13–15 (2009)

    Article  ADS  Google Scholar 

  17. M.A. Bandres, I. Kaminer, M. Mills, B.M. Rodriguez-Lara, E. Greenfield, M. Segev, D.N. Christodoulides, Accelerating optical beams. Opt. Photonic News 24(6), 30–37 (2013)

    Article  ADS  Google Scholar 

  18. R. Bekenstein, M. Segev, Self-accelerating optical beams in highly nonlocal nonlinear media. Opt. Express 19(24), 23706–23715 (2011)

    Article  ADS  Google Scholar 

  19. P.A. Bélanger, Packetlike solutions of the homogeneous-wave equation. J. Opt. Soc Am. A 1(7), 723–724 (1984)

    Article  ADS  Google Scholar 

  20. M.V. Berry, N.L. Balazs, Nonspreading wave packets. Am. J. Phys. 47(2), 264–267 (1979)

    Article  ADS  Google Scholar 

  21. I.M. Besieris, A.M. Shaarawi, R.W. Ziolkowski, Nondispersive accelerating wave packets. Am. J. Phys. 62(6), 519–521 (1994)

    Article  ADS  Google Scholar 

  22. I.M. Besieris, A.M. Shaarawi, A note on an accelerating finite energy Airy beam. Opt. Lett. 32(16), 2447–2449 (2007)

    Article  ADS  Google Scholar 

  23. I.M. Besieris, A.M. Shaarawi, Accelerating Airy beams with non-parabolic trajectories. Opt. Commun. 331, 235–238 (2014)

    Article  ADS  Google Scholar 

  24. I. Bialynicki-Birula, Photon as a quantum particle. Acta Phys. Pol. B 37(3), 935–946 (2006)

    ADS  Google Scholar 

  25. I. Bialynicki-Birula, Z. Bialynicka-Birula, Canonical separation of angular momentum of light into its orbital and spin parts. J. Opt. 13(6), 064014 (2011)

    Article  ADS  Google Scholar 

  26. C.P. Boyer, R.T. Sharp, P. Winternitz, Symmetry breaking interactions for the time dependent Schrödinger equation. J. Math. Phys. 17(8), 1439–1451 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. M. Born, E. Wolf, Principles of Optics, 7th edn. (Pergamon Press, Oxford, 1999)

    Book  Google Scholar 

  28. C. Brosseau, Polarization and coherence optics: historical perspective, status, and future directions, in Progress in Optics, ed. by E. Wolf (Elsevier, Amsterdam, 2009), pp. 149–208

    Google Scholar 

  29. B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck, Austria, 1965

  30. R.-P. Chen, C.-F. Yin, X.-X. Chu, H. Wang, Effect of Kerr nonlinearity on an Airy beam. Phys. Rev. A 82, 043832 (2010)

    Article  ADS  Google Scholar 

  31. R.-P. Chen, H.-P. Zheng, C.-Q. Dai, Wigner distribution function of an Airy beam. J. Opt. Soc. Am. A 28(6), 1307–1311 (2011)

    Article  ADS  Google Scholar 

  32. A. Chong, W.H. Renninger, D.N. Christodoulides, F.W. Wise, Airy-Bessel wave packets as versatile linear light bullets. Nat. Photonics 4(2), 103–106 (2010)

    Article  ADS  Google Scholar 

  33. R. Cordero-Soto, R.M. Lopez, E. Suazo, S.K. Suslov, Propagator of a charged particle with a spin in uniform magnetic and perpendicular electric fields. Lett. Math. Phys. 84(2–3), 159–178 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. R. Cordero-Soto, S.K. Suslov, Time reversal for modified oscillators. Theor. Math. Phys. 162(3), 286–316 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. R.T. Couto, Green’s functions for the wave, Helmholtz and Poisson equations in a two-dimensional boundless domain. Revista Brasileira de Ensino de Física 35(1), 1304 (2013)

    Article  MathSciNet  Google Scholar 

  36. Y.A. Danilov, G.I. Kuznetsov, Y.A. Smorodinsky, On the symmetry of classical and wave equations. Sov. J. Nucl. Phys. 32(6), 801–804 (1980)

    Google Scholar 

  37. J.A. Davis, M.J. Mitry, M.A. Bandres, D.M. Cottrell, Observation of accelerating parabolic beams. Opt. Express 16(17), 12866–12871 (2008)

    Article  ADS  Google Scholar 

  38. J.A. Davis, M.J. Mitry, M.A. Bandres, I. Ruiz, K.P. McAuley, D.M. Cottrell, Generation of accelerating Airy and accelerating parabolic beams using phase-only patterns. Appl. Opt. 48(17), 3170–3176 (2009)

    Article  ADS  Google Scholar 

  39. Y.N. Demkov, Channeling, superfocusing, and nuclear reactions. Phys. Atomic Nucl. 72(5), 779–785 (2009)

    Article  ADS  Google Scholar 

  40. Y.N. Demkov, J.D. Meyer, A sub-atomic microscope, superfocusing in channeling and close encounter atomic and nuclear reactions. Eur. Phys. J. B 42, 361–365 (2004)

    Article  ADS  Google Scholar 

  41. D.M. Deng, Propagation of Airy-Gaussian beams in a quadratic-index medium. Eur. Phys. J. D 65, 553–556 (2010)

    Article  ADS  Google Scholar 

  42. D.M.R. Dennis, J.B. Götte, R.P. King, M.A. Morgan, M.A. Alonso, Paraxial and nonparaxial polynomial beams and the analytic approach to propagation. Opt. Lett. 36(22), 4452–4454 (2011)

    Article  ADS  Google Scholar 

  43. A.S. Desyatnikov, D. Buccoliero, M.R. Dennis, Y.S. Kivshar, Suppression of collapse for spiraling elliptic solutions. Phys. Rev. Lett. 104, 053902 (2010)

    Article  ADS  Google Scholar 

  44. I.H. Deutsch, J.C. Garrison, Paraxial quantum propagation. Phys. Rev. A 43(5), 2498–2513 (1991)

    Article  ADS  Google Scholar 

  45. V.V. Dodonov, V.I. Man’ko, Invariants and correlated states of nonstationary quantum systems, in Invariants and the Evolution of Nonstationary Quantum Systems, Proceedings of Lebedev Physics Institute, vol. 183, pp. 71–181, Nauka, Moscow, 1987 (in Russian); English translation published by Nova Science, Commack, New York, 1989, pp. 103–261

  46. J. Durnin, Exact solutions for nondiffracting beams I. The scalar theory. J. Opt. Soc. Am. A 4(4), 651–654 (1987)

    Article  ADS  Google Scholar 

  47. J. Durnin, J.J. Miceli Jr, J.H. Eberly, Diffraction-free beams. Phys. Rev. Lett. 58(15), 1499–1501 (1987)

    Article  ADS  Google Scholar 

  48. G. Eichmann, Quasi-geometric optics of media with inhomogeneous index of refraction. J. Opt. Soc. Am. 61(2), 161–168 (1971)

    Article  ADS  Google Scholar 

  49. V. Fock, Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld. Zs. für Phys. 47, 446–448 (1928). translated to English: A Comment on Quantization of the Harmonic Oscillator in a Magnetic Field, in Selected Works: Quantum Mechanics and Quantum Field Theory, ed. by L.D. Faddeev, L.A. Khalfin, I.V. Komarov (Chapman & Hall/CRC, Boca Raton, London, New York, Washington, DC, 2004), pp. 29–31

  50. V.A. Fock, Electromagnetic Diffraction and Propagation Problems (Pergamon Press, London, 1965)

    Google Scholar 

  51. S. Fürhapter, A. Jesacher, S. Bernet, M. Ritsch-Marte, Spiral interferometry. Opt. Lett. 30(15), 1953–1955 (2005)

    Article  ADS  Google Scholar 

  52. L. Gagnon, P. Winternitz, Lie symmetries of a generalised non-linear Schrödinger equation: II. Exact solutions. J. Phys. A Math. Gen. 22, 469–497 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. J.A. Giannini, R.I. Joseph, The role of the second Painlevé transcendent in nonlinear optics. Phys. Lett. A 141(8), 417–419 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  54. G. Gibson, J. Courtial, M.J. Padgett, M. Vasnetsov, V. Pas’ko, S.M. Barnett, S. Franke-Arnold, Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12(22), 5448–5456 (2004)

    Article  ADS  Google Scholar 

  55. A.M. Goncharenko, Gaussian Beams of Light (Nauka & Tekhnika, Minsk, 1977). (in Russian)

    Google Scholar 

  56. F. Gori, G. Guattari, C. Padovani, Bessel–Gauss beams. Opt. Commun. 64(6), 491–495 (1987)

    Article  ADS  Google Scholar 

  57. D.M. Greenberg, Comment on “Nonspreading wave packets”. Am. J. Phys. 48(3), 256 (1980)

    Article  ADS  Google Scholar 

  58. Y. Gu, G. Gbur, Scintillation of Airy beam arrays in atmospheric turbulence. Opt. Lett. 35, 3456–3458 (2010)

    Article  ADS  Google Scholar 

  59. Y. Gu, Statistics of optical vortex wander on propagation through atmospheric turbulence. J. Opt. Soc. Am. A 30(4), 708–716 (2013)

    Article  ADS  Google Scholar 

  60. G. Gbur, T.D. Visser, Coherence vortices in partially coherent beams. Opt. Commun. 222, 117–125 (2003)

    Article  ADS  Google Scholar 

  61. A.V. Gurevich, Nonlinear Phenomena in the Ionosphere (Springer, Berlin, 1978)

    Book  Google Scholar 

  62. J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, T. Omatsu, Optical-vortex laser ablation. Opt. Express 18(3), 2144–2151 (2010)

    Article  ADS  Google Scholar 

  63. M.R. Hatzvi, Y.Y. Schechner, Three-dimensional optical transfer of rotating beams. Opt. Lett. 37, 32074 (2012)

    Article  Google Scholar 

  64. H.A. Haus, J.L. Pan, Photon spin and the paraxial wave equation. Am. J. Phys. 61(9), 818–821 (1993)

    Article  ADS  Google Scholar 

  65. J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975)

    MATH  Google Scholar 

  66. I. Kaminer, M. Segev, D.N. Christodoulides, Self-accelerating self-trapped optical beams. Phys. Rev. Lett. 106, 213903 (2011)

    Article  ADS  Google Scholar 

  67. J. Kasparian, J.-P. Wolf, Laser beams take a curve. Science 324, 194–195 (2009)

    Article  ADS  Google Scholar 

  68. C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue Waves in the Ocean (Springer, Berlin, 2009)

    MATH  Google Scholar 

  69. A.P. Kiselev, Localized light waves: paraxial and exact solutions of the wave equation (a review). Opt. Spectrosc. 102(4), 603–622 (2007)

    Article  ADS  Google Scholar 

  70. A.P. Kiselev, M.V. Perel, Highly localized solutions of the wave equation. J. Math. Phys. 41(4), 1934–1955 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. A.P. Kiselev, A.B. Plachenov, P. Chamorro-Posada, Nonparaxial wave beams and packets with general astigmatism. Phys. Rev. A 85(4), 043835 (2012)

    Article  ADS  Google Scholar 

  72. M. Kline, I.W. Kay, Electromagnetic Theory and Geometrical Optics (Interscience Publishers, New York, 1965)

    MATH  Google Scholar 

  73. H. Kogelnik, On the propagation of Gaussian beams of light through lenslike media including those with a loss or gain variation. Appl. Opt. 4(12), 1562–1569 (1965)

    Article  ADS  Google Scholar 

  74. H. Kogelnik, T. Li, Laser beams and resonators. Appl. Opt. 5(10), 1550–1567 (1966)

    Article  ADS  Google Scholar 

  75. C. Koutschan, Advanced applications of the holonomic systems approach. PhD thesis, Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria, 2009

  76. C. Koutschan, HolonomicFunctions (user’s guide), RISC Report Series, Johannes Kepler University, Linz, Austria, 2010; http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/

  77. C. Koutschan, Creative telescoping for holonomic functions, in Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, ed. by C. Schneider, J. Blümlein Springer Series “Texts and Monographs in Symbolic Computation” (Springer, Wien, 2013), pp. 171–194

  78. C. Koutschan, Mathematica notebook Koutschan.nb, http://hahn.la.asu.edu/~suslov/curres/index.htm; see also http://iopscience.iop.org/0953-4075/46/10/104007/media

  79. C. Koutschan, P. Paule, S.K. Suslov, Relativistic Coulomb Integrals and Zeilbergers Holonomic Systems Approach II, in AADIOS 2012—Algebraic and Algorithmic Aspects of Differential and Integral Operators Session, ed. by M. Barkatou et al., Lecture Notes in Computer Sciences, vol. 8372 (Springer, 2014) pp. 135–145

  80. C. Koutschan, E. Suazo, S.K. Suslov, Mathematica notebook MultiParameterModes.nb, supplementary electronic material to the article Fundamental Laser Modes in Paraxial Optics: From Computer Algebra and Simulations to Experimental Observation, http://www.koutschan.de/data/lasermodes/, 2015

  81. C. Krattenthaler, S.I. Kryuchkov, A. Mahalov, S.K. Suslov, On the problem of electromagnetic-field quantization. Int. J. Theor. Phys. 52(12), 4445–4460 (2013); see also arXiv:1301.7328v2 [math-ph] 9 Apr 2013

  82. Y.A. Kravtsov, Y.I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer, Berlin, 1990)

    Book  Google Scholar 

  83. S.G. Krivoshlykov, I.N. Sissakian, Optical beam and pulse propagation in inhomogeneous media. Application to multiple parabolic-index waveguides. Opt. Quantum Electron. 12, 463–475 (1980)

    Article  ADS  Google Scholar 

  84. S.G. Krivoshlykov, N.I. Petrov, I.N. Sissakian, Spacial coherence of optical beams in longitudinally inhomogeneous media with quadratic refractive index profiles. Sov. J. Quantum Electron. 15(3), 330–338 (1985)

    Article  ADS  Google Scholar 

  85. S.G. Krivoshlykov, N.I. Petrov, I.N. Sissakian, Correlated coherent states and propagation of arbitrary Gaussian beams in longitudinally inhomogeneous quadratic media exhibiting absorption or amplification. Sov. J. Quantum Electron. 16(7), 933–941 (1986)

    Article  ADS  Google Scholar 

  86. S.G. Krivoshlykov, E.G. Sauter, Transformation of paraxial beams in arbitrary multimode parabolic-index fiber tapers by using a quantum-theoretical approach. Appl. Opt. 31(7), 2017–2024 (1992)

    Article  ADS  Google Scholar 

  87. S.I. Kryuchkov, N. Lanfear, S.K. Suslov, The Pauli–Lubański vector, complex electrodynamics, and photon helicity. Phys. Scr. 90(7), 074065 (2015)

    Article  ADS  Google Scholar 

  88. S.I. Kryuchkov, S.K. Suslov, J.M. Vega-Guzmán, The minimum-uncertainty squeezed states for atoms and photons in a cavity. J. Phys. B Atomic Mol. Opt. Phys. 46, 104007 (2013). (IOP Select and Highlight of 2013)

    Article  ADS  Google Scholar 

  89. E.A. Kuznetsov, S.K. Turitsyn, Talanov transformations in self-focusing problems and instability of stationary waveguides. Phys. Lett. A 112(6–7), 273–275 (1985)

    Article  ADS  Google Scholar 

  90. N. Lanfear, R.M. López, S.K. Suslov, Exact wave functions for generalized harmonic oscillators. J. Russ. Laser Res. 32(4), 352–361 (2011)

    Article  Google Scholar 

  91. M. Lax, W.H. Louisell, W.B. McKnight, From Maxwell to paraxial wave optics. Phys. Rev. A 11(4), 1365–1370 (1975)

    Article  ADS  Google Scholar 

  92. A. Lotti et al., Stationary nonlinear Airy beams. Phys. Rev. A 84, 021807(R) (2011)

    Article  ADS  Google Scholar 

  93. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75(1), 281–324 (2003)

    Article  ADS  Google Scholar 

  94. R.M. López, S.K. Suslov, J.M. Vega-Guzmán, Reconstracting the Schrödinger groups. Phys. Scr. 87(3), 038118 (2013)

    Article  Google Scholar 

  95. R.M. López, S.K. Suslov, J.M. Vega-Guzmán, On a hidden symmetry of quantum harmonic oscillators. J. Differ. Equ. Appl. 19(4), 543–554 (2013)

    Article  MATH  Google Scholar 

  96. R.K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1964)

    Google Scholar 

  97. A. Mahalov, E. Suazo, S.K. Suslov, Spiral laser beams in inhomogeneous media. Opt. Lett. 38(15), 2763–2766 (2013)

    Article  ADS  Google Scholar 

  98. A. Mahalov, S.K. Suslov, An “Airy gun”: self-accelerating solutions of the time-dependent Schrödinger equation in vacuum. Phys. Lett. A 377, 33–38 (2012)

    Article  ADS  Google Scholar 

  99. A. Mahalov, S.K. Suslov, Wigner function approach to oscillating solutions of the 1D-quintic nonlinear Schrödinger equation. J. Nonlinear Opt. Phys. Mater. 22(2), 1350013 (2013)

    Article  ADS  Google Scholar 

  100. A. Mahalov, S.K. Suslov, Solution of paraxial wave equation for inhomogeneous media in linear and quadratic approximation. Proc. Am. Math. Soc. 143(2), 595–610 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  101. A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, Entanglement of the orbital angular momentum states of photons. Nature 412(19), 313–316 (2001)

    Article  ADS  Google Scholar 

  102. M.E. Marhic, Oscillating Hermite-Gaussian wave functions of the harmonic oscillator. Lett. Nuovo Cim. 22(8), 376–378 (1978)

    Article  MathSciNet  Google Scholar 

  103. M.A.M. Marte, S. Stenholm, Paraxial light and atom optics: the Schrödinger equation and beyond. Phys. Rev. A 56(4), 2940–2953 (1997)

    Article  ADS  Google Scholar 

  104. M. Meiler, R. Cordero-Soto, S.K. Suslov, Solution of the Cauchy problem for a time-dependent Schödinger equation. J. Math. Phys. 49, 072102 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  105. W. Miller Jr, Symmetry and Separation of Variables, Encyclopedia of Mathematics and Its Applications, vol. 4 (Addison-Wesley Publishing Company, Reading, 1977)

    Google Scholar 

  106. G. Molina-Terriza, J.P. Torres, L. Torner, Twisted photons. Nat. Phys. 3(5), 305–310 (2007)

    Article  Google Scholar 

  107. U. Niederer, The maximal kinematical invariance group of the free Schrödinger equations. Helv. Phys. Acta 45, 802–810 (1972)

    MathSciNet  Google Scholar 

  108. U. Niederer, The maximal kinematical invariance group of the harmonic oscillator. Helv. Phys. Acta 46, 191–200 (1973)

    Google Scholar 

  109. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Birkhäuser, Basel, 1988)

    Book  MATH  Google Scholar 

  110. A.F. Nikiforov, S.K. Suslov, V.B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable (Springer, Berlin, 1991)

    Book  MATH  Google Scholar 

  111. B. Øksendal, Stochastic Differential Equations (Springer, Berlin, 2000)

    Google Scholar 

  112. A.Y. Okulov, Angular momentum of photons and phase conjugation. J. Phys. B Atomic Mol. Opt. Phys. 41, 101001 (2008)

    Article  ADS  Google Scholar 

  113. F.W.J. Olver, Airy and related functions, in NIST Handbook of Mathematical Functions, ed. by F.W.J. Olwer, D.M. Lozier, et al. (Cambridge University Press, Cambridge, 2010). see also: http://dlmf.nist.gov/9

  114. X. Pang, G. Gbur, T.D. Visser, The Gouy phase of Airy beams. Opt. Lett. 36(13), 2492–2494 (2011)

    Article  ADS  Google Scholar 

  115. R. Piestun, Y.Y. Schechner, J. Shamir, Propagation-invariant wave fields with finite energy. J. Opt. Soc. Am. A 17(2), 294–303 (2000)

    Article  ADS  Google Scholar 

  116. P. Polynkin, M. Kolesik, J.V. Moloney, G.A. Siviloglou, D.N. Christodoulides, Curved plasma channel generation using ultraintense Airy beams. Science 324, 229–232 (2009)

    Article  ADS  Google Scholar 

  117. S.A. Ponomarenko, G.P. Agrawal, Do solitonlike self-similar waves exist in nonlinear optical media? Phys. Rev. Lett. 97, 013901 (2006)

    Article  ADS  Google Scholar 

  118. R. Pratesi, L. Ronchi, Generalized Gaussian beams in free space. J. Opt. Soc. Am. 67(9), 1274–1276 (1977)

    Article  ADS  Google Scholar 

  119. A. Rudnick, D.M. Marom, Airy-soliton interactions in Kerr media. Opt. Express 19(25), 25570–25582 (2011)

    Article  ADS  Google Scholar 

  120. S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Principles of Statistical Radiophysics: Wave Propagation Through Random Media (Springer, Berlin, 1989)

    Book  MATH  Google Scholar 

  121. Y.Y. Schechner, R. Piestun, J. Shamir, Wave propagation with rotating intensity distributions. Phys. Rev. E 54(1), R50–R53 (1996)

    Article  ADS  Google Scholar 

  122. U.T. Schwarz, M.A. Banderes, J.C. Gutiérrez-Vega, Observation of Ince–Gaussian modes in stable resonators. Opt. Lett. 29(16), 1870–1872 (2004)

    Article  ADS  Google Scholar 

  123. A.E. Siegman, Hermite-Gaussian functions of complex argument as optical-beam eigenfunctions. J. Opt. Soc. Am. 63(9), 1093–1094 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  124. A.E. Siegman, Lasers (Univ. Sci. Books, Mill Valey, 1986)

    Google Scholar 

  125. G.A. Siviloglou, D.N. Christodoulides, Accelerating finite energy Airy beams. Opt. Lett. 32(2), 979–981 (2007)

    Article  ADS  Google Scholar 

  126. G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Observation of accelerating Airy beams. Phys. Rev. Lett. 99, 213901 (2007)

    Article  ADS  Google Scholar 

  127. R. Smith, Giant waves. J. Fluid Mech. 77(3), 417–431 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  128. W.J. Smith, Modern Optical Engineering: The Design of Optical Systems, 3rd edn. (McGraw-Hill, New York, 2000)

    Google Scholar 

  129. A. Sommerfeld, Partial Differential Equations in Physics (Academic Press, New York, 1949)

    MATH  Google Scholar 

  130. P. Sprange, B. Hafizi, Comment on nondiffracting beams. Phys. Rev. Lett. 66(6), 837 (1991)

    Article  ADS  Google Scholar 

  131. S. Steinberg, Applications of the Lie algebraic formulas of Baker, partial differential equations. J. Differ. Equ. 26, 404–434 (1977)

    Article  ADS  MATH  Google Scholar 

  132. E. Suazo, S.K. Suslov, Soliton-like solutions for nonlinear Schrödinger equation with variable quadratic Hamiltonians. J. Russ. Laser Res. 33(1), 63–82 (2012)

    Article  Google Scholar 

  133. S.K. Suslov, On integrability of nonautonomous nonlinear Schrödinger equations. Proc. Am. Math. Soc. 140(9), 3067–3082 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  134. M. Tajiri, Similarity reduction of the one and two dimensional nonlinear Schrödinger equations. J. Phys. Soc. Jpn. 52(2), 1908–1917 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  135. V.I. Talanov, Focusing of light in cubic media. JETP Lett. 11, 199–201 (1970)

    ADS  Google Scholar 

  136. W. Tang, A. Mahalov, Stochastic Lagrangian dynamics for charged flows in the E−F regions of ionosphere. Phys. Plasmas 20, 032305 (2013)

    Article  ADS  Google Scholar 

  137. T. Tao, A pseudoconformal compactification of the nonlinear Schrödinger equation and applications. N. Y. J. Math. 15, 265–282 (2009)

    MATH  Google Scholar 

  138. A.V. Timofeev, Geometrical optics and the diffraction phenomenon. Phys. Uspekhi 48(6), 609–613 (2005)

    Article  ADS  Google Scholar 

  139. A. Torre, Gaussian modulated Ai- and Bi-based solutions of the 2D PWE: a comparison. Appl. Phys. B 99, 775–799 (2010)

    Article  ADS  Google Scholar 

  140. A. Torre, Paraxial equation, Lie-algebra-based approach, in Mathematical Optics: Classical, Quantum, and Computational Methods, ed. by V. Lakshmianrayanan, M.L. Calvo, T. Alieva (CRC Press, Boca Raton, 2013), pp. 341–417

    Google Scholar 

  141. J. Turunen, A.T. Friberg, Propagation-invariant optical fields, in Progress in Optics, ed. by E. Wolf (Elsevier, Amsterdam, 2009), pp. 1–88

    Google Scholar 

  142. K. Unnikrishnan, A.R.P. Rau, Uniqueness of the Airy packet in quantum mechanics. Am. J. Phys. 64(8), 1034–1035 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  143. L.A. Vainshtein, Electromagnetic Waves, 2nd edn. (Radio i Svyaz’, Moscow, 1988). (in Russian)

    Google Scholar 

  144. M.B. Vinogradova, O.V. Rudenko, A.P. Sukhorukov, Theory of Waves, 2nd edn. (Nauka, Moscow, 1990). (in Russian)

    Google Scholar 

  145. V.S. Vladimirov, Equations of Mathematical Physics (Marcel Dekker, New York, 1971)

    Google Scholar 

  146. S.N. Vlasov, V.I. Talanov, The parabolic equation in the theory of wave propagation. Radiophys. Quantum Electron. 38(1–2), 1–12 (1995)

    MathSciNet  ADS  Google Scholar 

  147. A. Walther, The Ray and Wave Theory of Lenses (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  148. E.M. Wright, J.C. Garrison, Path-integral derivation of the complex ABCD Huygens integral. J. Opt. Soc. Am. A 4(9), 1751–1755 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  149. A. Wünsche, Coherence vortices in partially coherent beams. J. Opt. Soc. Am. A 6(9), 1320–1329 (1989)

    Article  ADS  Google Scholar 

  150. A.M. Yao, M.J. Padgett, Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3(2), 161–204 (2011)

    Article  Google Scholar 

  151. A. Yariv, Quantum Electronics (Wiley, New York, 1988)

    Google Scholar 

  152. A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th edn. (Oxford University Press, Oxford, 2007)

    Google Scholar 

Download references

Acknowledgments

This research was partially carried out during our participation in the Summer School on “Combinatorics, Geometry and Physics” at the Erwin Schrödinger International Institute for Mathematical Physics (ESI), University of Vienna, in June 2014. We wish to express our gratitude to Christian Krattenthaler for his hospitality. The first-named author was supported by the Austrian Science Fund (FWF): W1214, the second-named author by the Simons Foundation Grant #316295 and by the National Science Foundation Grant DMS-1440664, and the third-named author by the AFOSR Grant FA9550-11-1-0220. We are grateful to Eugeny G. Abramochkin, Sergey I. Kryuchkov, Vladimir I. Man'ko, and Peter Paule for valuable comments and to Miguel A. Bandres for kindly pointing out the reference [16] to our attention. Suggestions from the referees are much appreciated. Last but not least, we would like to thank Aleksei P. Kiselev for communicating the interesting articles [6971].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Koutschan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (nb 10104 KB)

Appendices

Appendix 1: From Maxwell to paraxial wave

We follow [9] with somewhat different details. In dielectrics (no free current, no free charge, isotropic, homogeneous, material linear), the Maxwell equations for the complex electric \({\varvec{E}}\) and magnetic \({\varvec{H}}\) fields for a monochromatic wave varying as \({\text{e}}^{-i\omega t}\) are given by

$$\begin{aligned} {\text {curl}}{\varvec{E}}=i\frac{\omega }{c}\mu {\varvec{H}} ,\qquad \ \ {\text {div}}\left( \mu {\varvec{H}}\right) =0, \end{aligned}$$
(5.1)
$$\begin{aligned} {\text {curl}}{\varvec{H}}=-i\frac{\omega }{c}\varepsilon {\varvec{E}} ,\qquad {\text {div}}\left( \varepsilon {\varvec{E}}\right) =0, \end{aligned}$$
(5.2)

where \(\varepsilon\) is the permittivity and \(\mu\) is the permeability of the material (see, for example, [12, 91, 143, 144]). Let us consider a “polarized” wave of the form,

$$\begin{aligned} {\varvec{E}}=f(x,y,z){\text{e}}^{ikz}{\varvec{e}}_{x}+g(x,y,z){\text{e}}^{ikz} {\varvec{e}}_{z},\qquad k^{2}=\varepsilon \mu \frac{\omega ^{2}}{c^{2}}, \end{aligned}$$
(5.3)

where \(\left\{ {\varvec{e}}_{x},{\varvec{e}}_{y},{\varvec{e}} _{z}\right\}\) are orthonormal vectors in \(\left. {\mathbb {R}} \right. ^{3}.\) From the first Equation (5.1) one gets:

$$\begin{aligned} i\frac{\omega }{c}\mu {\varvec{H}}&={\text {curl}}{\varvec{E}} \\&=\frac{\partial g}{\partial y}{\text{e}}^{ikz}{\varvec{e}}_{x}+\left( \frac{\partial f}{\partial z}+ikf-\frac{\partial g}{\partial x}\right) {\text{e}}^{ikz}{\varvec{e}}_{y}-\frac{\partial f}{\partial y}{\text{e}}^{ikz}{\varvec{e}} _{z} \end{aligned}$$
(5.4)

and the second Equation (5.1) is automatically satisfied. In addition, from the second Equation (5.2):

$$\begin{aligned} \frac{\partial f}{\partial x}+\frac{\partial g}{\partial z}+ikg=0. \end{aligned}$$
(5.5)

If \(g\equiv 0,\) then \(f_{x}=0\) and the only transversal solution is a plane wave, \({\varvec{E}}={\text{e}}^{ikz}{\varvec{e}}_{x},\) up to a constant multiple (cf. [91]).

In a similar fashion, from the first Equation (5.2) and (5.4) we obtain:

$$\begin{aligned} k^{2}{\varvec{E}}&={\text {curl}}\left( i\frac{\omega }{c} \mu {\varvec{H}}\right) =\left( k^{2}f+g_{xz}+ikg_{x}-f_{yy}-2ikf_{z} -f_{zz}\right) {\text{e}}^{ikz}{\varvec{e}}_{x} \\&\quad +\left( f_{xy}+g_{yz}+ikg_{y}\right) {\text{e}}^{ikz}{\varvec{e}}_{y}+\left( f_{xz}+ikf_{x}-g_{xx}-g_{yy}\right) {\text{e}}^{ikz}{\varvec{e}}_{z}. \end{aligned}$$
(5.6)

In view of (5.5), the latter equation can be simplified to

$$\begin{aligned} k^{2}{\varvec{E}}&=k^{2}\left( f{\varvec{e}}_{x}+g{\varvec{e}} _{z}\right) {\text{e}}^{ikz}\\&=\left( k^{2}f-f_{xx}-f_{yy}-2ikf_{z}-f_{zz}\right) {\text{e}}^{ikz} {\varvec{e}}_{x}\\&\quad+\left( k^{2}g-g_{xx}-g_{yy}-2ikg_{z}-g_{zz}\right) {\text{e}}^{ikz}{\varvec{e}}_{z}. \end{aligned}$$

Finally, under the imposed conditions \(\left| f_{zz}\right| \ll 2\left| kf_{z}\right|\) and \(\left| g_{zz}\right| \ll 2\left| kg_{z}\right| ,\) we arrive to the paraxial wave equations,

$$\begin{aligned} 2ik\frac{\partial F}{\partial z}+\frac{\partial ^{2}F}{\partial x^{2}} +\frac{\partial ^{2}F}{\partial y^{2}}=0, \end{aligned}$$
(5.7)

for the transversal and longitudinal components, \(F=\left\{ f,g\right\} ,\) of the complex electric field, respectively. [The corresponding magnetic field can be evaluated by (5.4).] Once again, these components are related by (5.5), which implies that

$$\begin{aligned} \frac{\partial }{\partial z}\left( {\text{e}}^{ikz}g\right) =-f_{x}{\text{e}}^{ikz}, \end{aligned}$$
(5.8)

and, integrating by parts,

$$\begin{aligned} {\text{e}}^{ikz}g=-\int f_{x}{\text{e}}^{ikz}\ {\text{d}}z=-\frac{1}{ik}f_{x}{\text{e}}^{ikz}+\frac{1}{ik}\int f_{xz}{\text{e}}^{ikz}\ {\text{d}}z\approx -\frac{1}{ik}f_{x}{\text{e}}^{ikz}, \end{aligned}$$

provided that \(\left| k\right| \gg 1.\) In paraxial approximation, it is a custom to write

$$\begin{aligned} g\approx -\frac{1}{ik}f_{x}=-\frac{1}{ik}\frac{\partial f}{\partial x} \end{aligned}$$
(5.9)

for the small longitudinal component of electric field that automatically satisfies (5.7). More details can be found in [9, 91]. A general solution is a superposition of two waves of the form (5.3).

Note The paraxial wave equations (5.7) for transversal and longitudinal components, \(F=\left\{ f(x,y,z),g(x,y,z)\right\} ,\) can be solved by the Fresnel integral,

$$\begin{aligned} F(x,y,z)&=\frac{k}{2\pi i z}\iint _{{\mathbb {R}}^{2}}\exp \left( \frac{ik}{2z}\left[ (x-\xi )^{2}+(y-\eta )^{2}\right] \right)\\&\quad\times F_{0}(\xi ,\eta )\ {\text{d}}\xi {\text{d}}\eta , \end{aligned}$$
(5.10)

subject to proper “initial” data, \(F_{0}=\left\{ f_{0}(x,y),g_{0}(x,y)\right\} ,\) which are related as follows,

$$\begin{aligned} g_{0}+\frac{1}{ik}\frac{\partial f_{0}}{\partial x}+\frac{1}{2k^{2}}\left( \frac{\partial ^{2}g_{0}}{\partial x^{2}}+\frac{\partial ^{2}g_{0}}{\partial y^{2}}\right) =0, \end{aligned}$$
(5.11)

in view of “divergence” condition (5.5). [When \(k\gg 1,\) one formally gets (5.9).]

In fact, Eq. (5.11) is the 2D inhomogeneous Helmholtz equation [129, 145]:

$$\begin{aligned} \frac{\partial ^{2}g_{0}}{\partial x^{2}}+\frac{\partial ^{2}g_{0}}{\partial y^{2}}+2k^{2}g_{0}=2ik\frac{\partial f_{0}}{\partial x}, \end{aligned}$$
(5.12)

which can be solved exactly provided that function \(f_{0}(x,y)\) is known. Under the Sommerfeld radiation condition,

$$\begin{aligned} \lim _{r\rightarrow \infty }r^{1/2}\left( \frac{\partial }{\partial r}-ik\sqrt{2}\right) g_{0}\left( r{\varvec{e}}\right) =0,\quad r=\sqrt{x^{2}+y^{2} }, \end{aligned}$$
(5.13)

uniformly in \({\varvec{e}}\), \(\left| {\varvec{e}}\right| =1,\) one gets [35, 145]:

$$\begin{aligned} g_{0}(x,y)&=\frac{k}{2}\iint _{{\mathbb {R}}^{2}}H_{0}^{(1)}\left( k\sqrt{2\left[ (x-\zeta )^{2}+(y-\vartheta )^{2}\right] }\right) \\&\quad\times\frac{\partial f_{0} }{\partial \zeta }(\zeta ,\vartheta )\ {\text{d}}\zeta {\text{d}}\vartheta , \end{aligned}$$
(5.14)

where \(H_{0}^{(1)}(z)\) is a Hankel function [109].

Appendix 2: From Maxwell to nonlinear paraxial optics

In a more general case (of a weakly inhomogeneous linear or nonlinear medium with a complex-valued dielectric permittivity \(\varepsilon ;\) see, for example, Refs. [50] and [143] for more details), one can look for solutions of Eqs. (5.1), (5.2) as a superposition,

$$\begin{aligned} {\varvec{E}}={\varvec{E}}_{x}+{\varvec{E}}_{y}, \end{aligned}$$
(5.15)

of two “polarized” waves:

$$\begin{aligned} {\varvec{E}}_{x}&=f(x,y,z){\text{e}}^{ik(z)}{\varvec{e}}_{x}+g(x,y,z){\text{e}}^{ik(z)} {\varvec{e}}_{z}, \\ {\varvec{E}}_{y}&=h(x,y,z){\text{e}}^{ik(z)}{\varvec{e}}_{y}+l(x,y,z){\text{e}}^{ik(z)} {\varvec{e}}_{z}, \end{aligned}$$
(5.16)

where f, g, h, l, and k are some complex-valued functions. In a similar fashion,

$$\begin{aligned}&F_{xx}+F_{yy}+F_{zz}+2ik_{z}F_{z}+\left( \varepsilon \mu \frac{\omega ^{2} }{c^{2}}-k_{z}^{2}+ik_{zz}\right) F \\&\quad \quad =-\left\{ \begin{array}{l} \left( {\mathcal {E}}+\dfrac{\varepsilon _{z}}{\varepsilon }\left( g+l\right) \right) _{x}\\ \left( {\mathcal {E}}+\dfrac{\varepsilon _{z}}{\varepsilon }\left( g+l\right) \right) _{y} \end{array} \right. ,\quad {\mathcal {E}}=\frac{\varepsilon _{x}}{\varepsilon }f+\frac{\varepsilon _{y}}{\varepsilon }h \end{aligned}$$
(5.17)

and

$$\begin{aligned}&G_{xx}+G_{yy}+G_{zz}+2ik_{z}G_{z}+\left( \varepsilon \mu \frac{\omega ^{2} }{c^{2}}-k_{z}^{2}+ik_{zz}\right) G \\&\quad =-ik_{z}\left( \mathcal {E+}\frac{\varepsilon _{z} }{\varepsilon }G\right) -\left( \mathcal {E+}\frac{\varepsilon _{z} }{\varepsilon }G\right) _{z}, \end{aligned}$$
(5.18)

where, by definition,

$$\begin{aligned} F=\left\{ \begin{array}{l} f (x,y,z)\\ h(x,y,z) \end{array} \right. ,\qquad G=\left\{ \begin{array}{l} g (x,y,z)\\ l(x,y,z) \end{array} \right. . \end{aligned}$$
(5.19)

Here, it is convenient to rewrite the last equation (5.2) as a sum of two equations:

$$\begin{aligned} f_{x}+g_{z}+ik_{z}g+\frac{\varepsilon _{x}}{\varepsilon }f+\frac{\varepsilon _{z}}{\varepsilon }g=0,\quad h_{y}+l_{z}+ik_{z}l+\frac{\varepsilon _{y} }{\varepsilon }h+\frac{\varepsilon _{z}}{\varepsilon }l=0. \end{aligned}$$
(5.20)

We did not impose any conditions yet and Eqs. (5.15)–(5.20) are equivalent to the original Maxwell system (5.1)–(5.2) under consideration. For paraxial approximation, we may choose \(k_{zz}=0,\) namely, \(k(z)=kz,\) where k is a constant.

Let us first consider linear and nonlinear codimension 1D cases. When \(h=l=f_{y} =g_{y}=\varepsilon _{y}=0,\) one can simplify to

$$\begin{aligned}&f_{xx}+f_{zz}+2ikf_{z}+\left( \varepsilon \mu \frac{\omega ^{2}}{c^{2}} -k^{2}\right) f+\left( \frac{\varepsilon _{x}}{\varepsilon }f+\dfrac{\varepsilon _{z}}{\varepsilon }g\right) _{x}=0, \end{aligned}$$
(5.21)
$$\begin{aligned}&g_{xx}+g_{zz}+2ikg_{z}+\left( \varepsilon \mu \frac{\omega ^{2}}{c^{2}} -k^{2}\right) g=-ik\left( \frac{\varepsilon _{x}}{\varepsilon }f\mathcal {+} \frac{\varepsilon _{z}}{\varepsilon }g\right) -\left( \frac{\varepsilon _{x} }{\varepsilon }f\mathcal {+}\frac{\varepsilon _{z}}{\varepsilon }g\right) _{z},\end{aligned}$$
(5.22)
$$\begin{aligned}&f_{x}+g_{z}+ikg+\frac{\varepsilon _{x}}{\varepsilon }f+\frac{\varepsilon _{z} }{\varepsilon }g=0. \end{aligned}$$
(5.23)

From the last equation,

$$\begin{aligned} f=-\frac{{\text{e}}^{-ikz}}{\varepsilon }\int (\varepsilon g{\text{e}}^{ikz})_{z}\ {\text{d}}x,\qquad g=-\frac{{\text{e}}^{-ikz}}{\varepsilon }\int {\text{e}}^{ikz}(\varepsilon f)_{x}\ {\text{d}}z. \end{aligned}$$
(5.24)

Thus Eqs. (5.21) and (5.22) can be thought of as certain integro-differential equations for complex-valued functions f and g, respectively. Integrating by parts,

$$\begin{aligned} g=-\frac{{\text{e}}^{-ikz}}{ik\varepsilon }\int (\varepsilon f)_{x}\ \mathrm{de}^{ikz} =-\frac{(\varepsilon f)_{x}}{ik\varepsilon }+\frac{{\text{e}}^{-ikz}}{ik\varepsilon }\int {\text{e}}^{ikz}(\varepsilon f)_{xz}\ {\text{d}}z\approx -\frac{(\varepsilon f)_{x} }{ik\varepsilon }. \end{aligned}$$
(5.25)

For large |k|,  it is also a custom to assume that \(\left| f_{zz} \right| \ll 2\left| kf_{z}\right| ,\) \(\left| f_{zz}\right| \ll 2\left| kf_{z}\right| ,\) and \(|g|\ll |f|.\) As a result, one may concentrate on the study of scalar inhomogeneous paraxial wave equation of the form:

$$\begin{aligned} f_{xx}+2ikf_{z}+\left( \varepsilon \mu \frac{\omega ^{2}}{c^{2}}+\left( \frac{\varepsilon _{x}}{\varepsilon }\right) _{x}-k^{2}\right) f+\frac{\varepsilon _{x}}{\varepsilon }f_{x}=0. \end{aligned}$$
(5.26)

In a weakly inhomogeneous nonlinear medium, we expand the (complex-valued) permittivity \(\varepsilon ,\)

$$\begin{aligned} \varepsilon (x,z)=\varepsilon _{0}(z)+\varepsilon _{1}(z)x+\varepsilon _{2}(z)x^{2}+\cdots \left( +\lambda \left| f\right| ^{2}+\cdots \right) \end{aligned}$$
(5.27)

and neglect the higher order terms. In this approximation,

$$\begin{aligned} \frac{\varepsilon _{x}}{\varepsilon }=\frac{\varepsilon _{1}}{\varepsilon _{0} }+\left[ 2\frac{\varepsilon _{2}}{\varepsilon _{0}}-\left( \frac{\varepsilon _{1}}{\varepsilon _{0}}\right) ^{2}\right] x,\qquad \left( \frac{\varepsilon _{x}}{\varepsilon }\right) _{x}=2\frac{\varepsilon _{2} }{\varepsilon _{0}}-\left( \frac{\varepsilon _{1}}{\varepsilon _{0}}\right) ^{2}. \end{aligned}$$
(5.28)

and one arrives at a form of the paraxial wave equation (2.1) (or its nonlinear versions).

The corresponding linear and nonlinear codimension 2D cases, when one can concentrate on a certain dominant component of electric field once again, are similar. Further details are left to the reader.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koutschan, C., Suazo, E. & Suslov, S.K. Fundamental laser modes in paraxial optics: from computer algebra and simulations to experimental observation. Appl. Phys. B 121, 315–336 (2015). https://doi.org/10.1007/s00340-015-6231-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6231-9

Mathematics Subject Classification

Navigation