Skip to main content
Log in

Analysis of the properties of a dual-core plasmonic photonic crystal fiber polarization splitter

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this work, the main properties of a dual-core plasmonic photonic crystal fiber that can split an incoming signal into two orthogonal polarization states are analyzed by using finite element method. The proposed splitter has a short length of 117 μm, being capable of splitting an incoming wave into two orthogonal states in the wavelength range between 1250 and 1710 nm. The main properties of the splitter are calculated such as extinction ratio, bandwidth, dispersion, mode-field-diameter and splice loss—the device would have a mode-field diameter around 4 μm and a splice loss below 5 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.N. Miliou, R. Srivastava, R.V. Ramaswamy, J. Lightwave Tech. 11, 220 (1993)

    Article  ADS  Google Scholar 

  2. C.W. Wu, T.L. Wu, H.C. Chang, IEEE Phot. Tech. Lett. 7, 786 (1995)

    Article  ADS  Google Scholar 

  3. G.D. Peng, T. Tjugiarto, P.L. Chu, Electron. Lett. 26, 682 (1990)

    Article  Google Scholar 

  4. J.C. Knight, T.A. Birks, R.F. Cregan, P.S.J. Russell, J.P. De Sandro, Elect. Lett. 34, 1347 (1998)

    Article  Google Scholar 

  5. N.G.R. Broderick, T.M. Monro, P.J. Bennett, D.J. Richardson, Opt. Lett. 24, 1395 (1999)

    Article  ADS  Google Scholar 

  6. S. Kim, C.S. Kee, Opt. Express 17, 15885 (2009)

    Article  ADS  Google Scholar 

  7. T. Fujisawa, K. Saitoh, K. Wada, M. Koshiba, Opt. Express 14, 893 (2006)

    Article  ADS  Google Scholar 

  8. M.J. Steel, R.M. Osgood Jr, J. Lightwave Tech. 19, 495 (2001)

    Article  ADS  Google Scholar 

  9. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, M. Fujita, Opt. Express 9, 676 (2001)

    Article  ADS  Google Scholar 

  10. T.P. Hansen, J. Broeng, S.E. Libori, E. Knudsen, A. Bjarklev, J.R. Jensen, H. Simonsen, IEEE Phot. Tech. Lett. 13, 588 (2001)

    Article  ADS  Google Scholar 

  11. Y. Du, S.G. Li, S. Liu, X.P. Zhu, X.X. Zhang, Appl. Phys. B 109, 65 (2012)

    Article  ADS  Google Scholar 

  12. A. Khaleque, H.T. Hattori, Appl. Opt. 54, 2543 (2015)

    Article  ADS  Google Scholar 

  13. A. Nagasaki, K. Saitoh, M. Koshiba, Opt. Express 19, 3799 (2011)

    Article  ADS  Google Scholar 

  14. P. Li, J. Zhao, Opt. Express 21, 5232 (2013)

    Article  ADS  Google Scholar 

  15. S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, D. Liu, IEEE Phot. J. 4, 1178 (2012)

    Article  Google Scholar 

  16. B. Shuai, L. Xia, Y. Zhang, D. Liu, Opt. Express 20, 5974 (2012)

    Article  ADS  Google Scholar 

  17. S. Zhang, K. Bao, N.J. Halas, H. Xu, P. Nordlander, Nano Lett. 11, 1657 (2011)

    Article  ADS  Google Scholar 

  18. H. Jiang, K. Xie, Y. Wang, Elect. Lett. 44, 796 (2008)

    Article  Google Scholar 

  19. X. Shan, U. Patel, S. Wang, R. Iglesias, N. Tao, Science 327, 1363 (2010)

    Article  ADS  Google Scholar 

  20. H.K. Tyagi, M.A. Schmidt, L. Prill Sempere, S. Russell, Opt. Express 16, 17227 (2008)

    Article  ADS  Google Scholar 

  21. H.K. Tyagi, H.W. Lee, P. Uebel, M.A. Schmidt, N. Joly, M. Scharrer, P.S.J. Russell, Opt. Lett. 35, 2573 (2010)

    Article  ADS  Google Scholar 

  22. H.W. Lee, M.A. Schmidt, R.F. Russell, N.Y. Joly, H.K. Tyagi, P. Uebel, P.S.J. Russell, Opt. Express 19, 12180 (2011)

    Article  ADS  Google Scholar 

  23. H. Chen, S. Li, G. An, J. Li, Z. Fan, Y. Han, Plasmonics 10, 57 (2015)

    Article  Google Scholar 

  24. L. Zhang, C. Yang, C. Yu, T. Luo, A.E. Willner, J. Lightwave Tech. 23, 3558 (2005)

    Article  ADS  Google Scholar 

  25. L. Zhang, C. Yang, Opt. Express 11, 1015 (2003)

    Article  ADS  Google Scholar 

  26. K. Saitoh, Y. Sato, M. Koshiba, Opt. Express 12, 3940 (2004)

    Article  ADS  Google Scholar 

  27. H. Chen, S. Li, T. Cheng, J. Modern Opt. 61, 1696 (2014)

    Article  ADS  Google Scholar 

  28. N.J. Florous, K. Saitoh, M. Koshiba, IEEE Phot. Tech. Lett. 18, 1231 (2006)

    Article  ADS  Google Scholar 

  29. N. Florous, K. Saitoh, M. Koshiba, Opt. Express 13, 7365 (2005)

    Article  ADS  Google Scholar 

  30. M.Y. Chen, J. Zhou, J. Lightwave Tech. 24, 5082 (2006)

    Article  ADS  Google Scholar 

  31. S. Liu, S.G. Li, G.B. Yin, R.P. Feng, X.Y. Wang, Opt. Comm. 285, 1097 (2012)

    Article  ADS  Google Scholar 

  32. Z. Zhang, Y. Tsuji, M. Eguchi, IEEE Phot. Tech. Lett. 26, 541 (2014)

    Article  ADS  Google Scholar 

  33. L. Zhang, C. Yang, IEEE Phot. Tech. Lett. 16, 1670 (2004)

    Article  ADS  Google Scholar 

  34. L. Rosa, F. Poli, M. Foroni, A. Cucinotta, S. Selleri, Opt. Lett. 31, 441 (2006)

    Article  ADS  Google Scholar 

  35. W. Lu, S. Lou, X. Wang, L. Wang, R. Feng, Appl. Opt. 52, 449 (2013)

    Article  ADS  Google Scholar 

  36. H. Jiang, E. Wang, J. Zhang, L. Hu, Q. Mao, Q. Li, K. Xie, Opt. Express 22, 30461 (2014)

    Article  ADS  Google Scholar 

  37. G.P. Agrawal, Nonlinear Fiber Optics (Academic press, New York, 2007)

  38. A. Vial, A.S. Grimault, D. Macias, D. Barchiesi, M.L. de La Chapelle, Phys. Rev. B 71, 085416 (2005)

    Article  ADS  Google Scholar 

  39. W.H. Reeves, J.C. Knight, P.S.J. Russell, P. Roberts, Opt. Express 10, 609 (2002)

    Article  ADS  Google Scholar 

  40. K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, Opt. Express 11, 843 (2003)

    Article  ADS  Google Scholar 

  41. K. Petermann, Elect. Lett. 19, 712 (1983)

    Article  Google Scholar 

  42. S.M. Razzak, Y. Namihira, J. Lightwave Tech. 26, 1909 (2008)

    Article  ADS  Google Scholar 

  43. S.G. Leon-Saval, T.A. Birks, N.Y. Joly, A.K. George, W.J. Wadsworth, G. Kakarantzas, P.S.J. Russell, Opt. Lett. 30, 1629 (2005)

    Article  ADS  Google Scholar 

  44. H.W. Lee, M.A. Schmidt, H.K. Tyagi, L.P. Sempere, P.S.J. Russell, Appl. Phys. Lett. 93, 111102 (2008)

    Article  ADS  Google Scholar 

  45. M.A. Schmidt, L.P. Sempere, H.K. Tyagi, C.G. Poulton, P.S.J. Russell, Phys. Rev. B 77, 033417 (2008)

    Article  ADS  Google Scholar 

  46. Y. Wang, C.R. Liao, D.N. Wang, Opt. Express 18, 18056 (2010)

    Article  ADS  Google Scholar 

  47. N.A. Issa, M.A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, M.C. Large, Opt. Lett. 29, 1336 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the University of New South Wales (Canberra Australia) and the Asian Office of Aerospace Research and Development (AOARD-USAir Force).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Khaleque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaleque, A., Mironov, E.G. & Hattori, H.T. Analysis of the properties of a dual-core plasmonic photonic crystal fiber polarization splitter. Appl. Phys. B 121, 523–532 (2015). https://doi.org/10.1007/s00340-015-6264-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6264-0

Keywords

Navigation