Skip to main content
Log in

Encapsulation of cobalt porphyrins in organically modified silica gel glasses and their nonlinear optical properties

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphyrin Cobalt(II) (CoPor) was introduced into nanostructured organically modified silica (ORMOSIL) using a sol–gel technique. Scanning electron microscopy, Fourier transform infrared (FT-IR), thermogravimetric analysis, and UV–Vis spectroscopy were performed to investigate the morphology, structure, thermal stability, and linear optical properties of the resulting gel glasses. The FT-IR spectrum and UV–Vis spectra strongly indicated the formation of a silica gel glass network and the successful encapsulation of CoPor in ORMOSIL silica gel glasses, respectively. The introduction of guest CoPor molecules induces silica to form more condensed surface characteristics, owing to the fact that CoPor can promote the hydrolysis and polycondensation procedure, and hence have better thermal stability as compared to blank silica gel glasses. Meanwhile, the dimerization phenomenon in a liquid matrix can be effectively suppressed in a silica solid-state matrix and is attributed to the ‘cage protection effect.’ The nonlinear optical (NLO) properties of CoPor gel glasses were investigated using the open-aperture Z-scan technique at 532 nm. The NLO performance of CoPor-incorporated solid-state silica gel glasses has been improved in comparison with those dispersed in dimethylformamide solution. More significantly, the NLO properties of CoPor-doped ORMOSIL gel glasses can be controlled by adjusting the concentration of the CoPor molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L.W. Tutt, T.F. Boggess, A review of optical limiting mechanisms and devices using organic, fullerenes, semiconductors and other materials. Prog. Quant. Electron. 17, 299 (1993)

    Article  ADS  Google Scholar 

  2. Y.P. Sun, J.E. Riggs, Organic and inorganic optical limiting materials. From fullerenes to nanoparticles. Int. Rev. Phys. Chem. 18, 43 (1999)

    Article  Google Scholar 

  3. J. Wang, W.J. Blau, Inorganic and hybrid nanostructures for optical limiting. J. Opt. A: Pure Appl. Opt. 11, 024001 (2009)

    Article  ADS  Google Scholar 

  4. L.W. Tutt, A. Kost, Optical limiting performance of C60 and C70 solution. Nature 356, 225 (1992)

    Article  ADS  Google Scholar 

  5. R. Signorini, M. Meneghetti, R. Bozio, M. Maggini, G. Scorrano, M. Prato et al., Optical limiting and non linear optical properties of fullerene derivatives embedded in hybrid sol–gel glasses. Carbon 38, 1653 (2000)

    Article  Google Scholar 

  6. J.W. Perry, K. Mansour, I.-Y.S. Lee, X.-L. Wu, P.V. Bedworth, C.-T. Chen et al., Organic optical limiter with a strong nonlinear absorptive response. Science 273, 1533 (1996)

    Article  ADS  Google Scholar 

  7. H.L. Gu, S. Li, J. Wang, W.J. Blau, Y. Chen, Indium(III) and Gallium(III) phthalocyanines-based nanohybrid materials for optical limiting. Mater. Chem. Phys. 137, 188 (2012)

    Article  Google Scholar 

  8. P.P. Kiran, D.R. Reddy, B.G. Maiya, D.N. Rao, Third-order nonlinearity and optical limiting studies in phosphorus(V) porphyrins with charge transfer states. Opt. Mater. 21, 565 (2003)

    Article  ADS  Google Scholar 

  9. D.N. Rao, Excited state dynamics in porphyrins in relevance to third-order nonlinearity and optical limiting. Opt. Mater. 21, 45 (2003)

    Article  ADS  Google Scholar 

  10. Y. Chen, Y. Lin, Y. Liu, J. Doyle, N. He, X.D. Zhuang et al., Carbon nanotube-based functional materials for optical limiting. J. Nanosci. Nanotech. 7, 1268 (2005)

    Article  Google Scholar 

  11. J. Wang, Y. Chen, W.J. Blau, Carbon nanotubes and nanotube composites for nonlinear optical devices. J. Mater. Chem. 19, 7425 (2009)

    Article  Google Scholar 

  12. J. Wang, Y. Hernandez, M. Lotya, J.N. Coleman, W.J. Blau, Broadband nonlinear optical response of graphene dispersions. Adv. Mater. 21, 2430 (2009)

    Article  Google Scholar 

  13. Z.B. Liu, Y. Wang, X.L. Zhang, Y.F. Xu, Y.S. Chen, J.Q. Tian, Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes. Appl. Phys. Lett. 94, 021902 (2009)

    Article  ADS  Google Scholar 

  14. R. Philip, P. Chantharasupawong, H. Qian, R. Jin, J. Thomas, Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals. Nano Lett. 12, 4661 (2012)

    Article  ADS  Google Scholar 

  15. C. Zheng, Y.H. Du, M. Feng, H.B. Zhan, Shape dependence of nonlinear optical behaviors of nanostructured silver and their silica gel glass composites. Appl. Phys. Lett. 93, 143108 (2008)

    Article  ADS  Google Scholar 

  16. M. Calvete, G.Y. Yang, M. Hanack, Porphyrins and phthalocyanines as materials for optical limiting. Synth. Met. 141, 231 (2004)

    Article  Google Scholar 

  17. M. Wang, R. Zuo, W. Meng, Y. Liu, Sol–gel derived CaO–B2O3–SiO2 glass/CaSiO3 ceramic composites: processing and electrical properties. J. Mater. Sci. 7, 843 (2011)

    Google Scholar 

  18. K.M. Kajihara, H.H. Hosono, Sol-gel synthesis of monolithic silica gels and glasses form phase-separating tetraethoxysilane-water binary system. Chem. Commun. 18, 2580 (2009)

    Article  Google Scholar 

  19. H.B. Zhan, W.Z. Chen, H. Yu, M.Q. Wang, Encapsulation of aluminum tetrasulfophthalocyanine chloride in silica xerogel and its optical properties. Mater. Lett. 57, 1361 (2003)

    Article  Google Scholar 

  20. H.B. Zhan, W.Z. Chen, J.C. Chen, M.Q. Wang, Dimerization of zinc tetrasulfophthalocyanine in sol–gel process. Mater. Sci. Eng. 100, 119 (2003)

    Article  Google Scholar 

  21. H.B. Zhan, M.Q. Wang, W.Z. Chen, G.H. Li, Encapsulation of aromatic oxygen palladium phthalocyanine in silica xerogel and its optical limiting property. Opt. Mater. 22, 377 (2003)

    Article  Google Scholar 

  22. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W.V. Stryland, Sensitive measurement of optical nonlinearities using single beam. IEEE J. Quant. Electron. 26, 760 (1990)

    Article  ADS  Google Scholar 

  23. A. Fidalgo, R. Ciriminna, L.M. Iharco, M. Pagliaro, Role of the alkyl–alkoxide precursor on the structure and catalytic properties of hybrid sol–gel catalysts. Chem. Mater. 17, 6686 (2005)

    Article  Google Scholar 

  24. B.Z. Zhan, M.A. White, M. Lumsden, Bonding of organic amino, vinyl, and acryl groups to nanometer-sized NaX zeolite crystal surfaces. Langmuir 19, 4205 (2003)

    Article  Google Scholar 

  25. H.B. Zhan, W.Z. Chen, M.Q. Wang, C.L. Zou, C. Zheng, Optical limiting properties of peripherally modified palladium phthalocyanines doped silica gel glass. Chem. Phys. Lett. 389, 119 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61108056), Major Projects of the University of Fujian Province (Grant No. 2015N5007), New Century Talent Support Program for Fujian Universities (Grant No. JA12226), and Talents Cultivation Program for Outstanding Young Scientists in Fujian Universities (Grant No. JA13208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C., Huang, L., Li, W. et al. Encapsulation of cobalt porphyrins in organically modified silica gel glasses and their nonlinear optical properties. Appl. Phys. B 123, 27 (2017). https://doi.org/10.1007/s00340-016-6605-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6605-7

Keywords

Navigation