Skip to main content
Log in

GaN nanowire arrays for photocatalytic applications II: influence of a dielectric shell and liquid environments

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

GaN nanowires (NWs) are promising candidates for photocatalytic devices due to their large surface-to-volume ratio and their waveguide character. Protective coatings and nanoparticle co-catalysts are widely used to improve the stability and the photocatalytic activity of semiconductors in liquid electrolytes. Here, we present a systematic experimental study of the influence of a dielectric shell and liquid environments on the interaction of light with GaN NW arrays related to photocatalytic applications. Transmission measurements on bare GaN NWs and core–shell NWs with varying shell thickness and refractive index of the shell reveal a shift of the transmission minima that originate from the coupling of light to various waveguide modes supported within the NWs. This shift is a result of the shift of the dispersion relations of the modes for core–shell NWs. The transmission spectra of GaN NWs in liquid environments show a spatial and spectral shift. These results are explained by the dependence of both, the waveguide properties of the single NWs and the photonic crystal characteristics of the NW array, on the refractive index of the environment. A comparison of the experimental findings with numerical simulations shows a good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Kida, Y. Minami, G. Guan, M. Nagano, M. Akiyama, A. Yoshida, Photocatalytic activity of gallium nitride for producing hydrogen from water under light irradiation. J. Mater. Sci. 41(11), 3527–3534 (2006)

    Article  ADS  Google Scholar 

  2. H.S. Jung, Y.J. Hong, Y. Li, J. Cho, Y.-J. Kim, G.-C. Yi, Photocatalysis using GaN nanowires. ACS Nano 2, 637–642 (2008)

    Article  Google Scholar 

  3. D. Wang, A. Pierre, M.G. Kibria, K. Cui, X. Han, K.H. Bevan, H. Guo, S. Paradis, A.R. Hakima, Z. Mi, Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy. Nano Lett. 11(6), 2353–7 (2011)

    Article  ADS  Google Scholar 

  4. B. AlOtaibi, H.P. Nguyen, S. Zhao, M.G. Kibria, S. Fan, Z. Mi, Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode. Nano Lett. 13(9), 4356–61 (2013)

    Article  ADS  Google Scholar 

  5. M.G. Kibria, F.A. Chowdhury, S. Zhao, B. AlOtaibi, M.L. Trudeau, H. Guo, Z. Mi, Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays. Nat. Commun. 6, 6797 (2015)

    Article  ADS  Google Scholar 

  6. P. Neuderth, P. Hille, J. Schrmann, A. Frank, C. Reitz, S. Martí-Sánchez, M. de la Mata, M. Coll, J. Arbiol, R. Marschall, M. Eickhoff, Passivation layers for nanostructured photoanodes: ultra-thin oxides on InGaN nanowires. J. Mater. Chem. A 6(2), 565–573 (2018)

    Article  Google Scholar 

  7. M. Pschenitza, S. Meister, A. von Weber, A. Kartouzian, U. Heiz, B. Rieger, Suppression of deactivation processes in photocatalytic reduction of \(\text{ CO }_{2}\) using pulsed light. ChemCatChem 8(16), 2688–2695 (2016)

    Article  Google Scholar 

  8. E. Calleja, M. Sanchez-Garcia, F.J. Sanchez, F. Calle, F.B. Naranjo, E. Munoz, U. Jahn, K. Ploog, Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy. Phys. Rev. B 62, 16826 (2000)

    Article  ADS  Google Scholar 

  9. F. Schuster, F. Furtmayr, R. Zamani, C. Magen, J.R. Morante, J. Arbiol, J.A. Garrido, M. Stutzmann, Self-assembled GaN nanowires on diamond. Nano Lett. 12(5), 2199–204 (2012)

    Article  ADS  Google Scholar 

  10. M. Wolz, C. Hauswald, T. Flissikowski, T. Gotschke, S. Fernandez-Garrido, O. Brandt, H.T. Grahn, L. Geelhaar, H. Riechert, Epitaxial growth of GaN nanowires with high structural perfection on a metallic TiN film. Nano Lett. 15(6), 3743–7 (2015)

    Article  ADS  Google Scholar 

  11. V. Kumaresan, L. Largeau, F. Oehler, H. Zhang, O. Mauguin, F. Glas, N. Gogneau, M. Tchernycheva, J.C. Harmand, Self-induced growth of vertical GaN nanowires on silica. Nanotechnology 27(13), 135602 (2016)

    Article  ADS  Google Scholar 

  12. J. Winnerl, R. Hudeczek, M. Stutzmann, Optical design of GaN nanowire arrays for photocatalytic applications. J. Appl. Phys. 123, 203104 (2018)

    Article  ADS  Google Scholar 

  13. R.S. Frederiksen, E. Alarcon-Llado, M.H. Madsen, K.R. Rostgaard, P. Krogstrup, T. Vosch, J. Nygard, I.Morral A. Fontcuberta, K.L. Martinez, Modulation of fluorescence signals from biomolecules along nanowires due to interaction of light with oriented nanostructures. Nano Lett. 15(1), 176–81 (2015)

    Article  ADS  Google Scholar 

  14. Rune S Frederiksen, Esther Alarcon-Llado, Peter Krogstrup, Laura Bojarskaite, Nina Buch-Mnson, Jessica Bolinsson, Jesper Nygrd, Anna Fontcuberta i Morral, Karen L Martinez, Nanowire-aperture probe: Local enhanced fluorescence detection for the investigation of live cells at the nanoscale. ACS Photon. 3(7), 1208–1216 (2016)

    Article  Google Scholar 

  15. X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductot-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010)

    Article  Google Scholar 

  16. L. Han, M. Lin, S. Haussener, Reliable performance characterization of mediated photocatalytic water-splitting half reactions. ChemSusChem 10(10), 2158–2166 (2017)

    Article  Google Scholar 

  17. Hu Shu, Nathan S. Lewis, Joel W. Ager, Jinhui Yang, James R. McKone, Nicholas C. Strandwitz, Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators. J. Phys. Chem. C 119(43), 24201–24228 (2015)

    Article  Google Scholar 

  18. G. Siddiqi, Z. Luo, Y. Xie, Z. Pan, Q. Zhu, J.A. Rohr, J.J. Cha, S. Hu, Stable water oxidation in acid using manganese-modified TiO\(_{2}\) protective coatings. ACS Appl. Mater. Interfaces 10, 18805 (2018)

    Article  Google Scholar 

  19. Nicklas Anttu, Alireza Abrand, Damir Asoli, Magnus Heurlin, Ingvar Åberg, Lars Samuelson, Magnus Borgström, Absorption of light in inp nanowire arrays. Nano Res. 7(6), 816–823 (2014)

    Article  Google Scholar 

  20. Shu Hu, Chun-Yung Chi, Katherine T. Fountaine, Maoqing Yao, Harry A. Atwater, P. Daniel Dapkus, Nathan S. Lewis, and Chongwu Zhou. Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodes. Energy Environ. Sci., 6(6), (2013)

  21. N. Anttu, V. Dagytè, X. Zeng, G. Otnes, M. Borgström, Absorption and transmission of light in III-V nanowire arrays for tandem solar cell applications. Nanotechnology 28(20), 205203 (2017)

    Article  ADS  Google Scholar 

  22. Anis Attiaoui, Stephan Wirth, André-Pierre Blanchard-Dionne, Michel Meunier, J. M. Hartmann, Dan Buca, and Oussama Moutanabbir. Extreme ir absorption in group iv-sigesn core–shell nanowires. J. Appl. Phys., 123(22), (2018)

  23. V. Dagyté, N. Anttu, Modal analysis of resonant and non-resonant optical response in semiconductor nanowire arrays. Nanotechnology 30(2), 025710 (2019)

    Article  ADS  Google Scholar 

  24. F. Schuster, M. Hetzl, S. Weiszer, J.A. Garrido, M. de la Mata, C. Magen, J. Arbiol, M. Stutzmann, Position-controlled growth of GaN nanowires and nanotubes on diamond by molecular beam epitaxy. Nano Lett. 15(3), 1773–9 (2015)

    Article  ADS  Google Scholar 

  25. Lumerical inc., (2018). http://www.lumerical.com/tcad-products/fdtd/,2018-05-23

  26. Lumerical inc., (2018). http://www.lumerical.com/tcad-products/mode/, 2018-05-23

  27. B. Wang, P.W. Leu, Tunable and selective resonant absorption in vertical nanowires. Opt. Lett. 37, 3756–3758 (2012)

    Article  ADS  Google Scholar 

  28. J. Chesin, S. Gradečak, Comparing directed efficiency of III-nitride nanowire light-emitting diodes. J. Nanophoton. 8(1), 083095 (2014)

    Article  ADS  Google Scholar 

  29. Y. Wu, Z. Xia, Z. Liang, J. Zhou, H. Jiao, H. Cao, X. Qin, Broadband absorption enhancement in elliptical silicon nanowire arrays for photovoltaic applications. Opt. Express 22, A1292–302 (2014)

    Article  ADS  Google Scholar 

  30. N. Dhindsa, J. Walia, S.S. Saini, A platform for colorful solar cells with enhanced absorption. Nanotechnology 27(49), 495203 (2016)

    Article  Google Scholar 

  31. A.W. Snyder, J.D. Love, Optical waveguide theory, 1st edn. (Chapman and Hall, New York, 1983)

    Google Scholar 

  32. S. Mokkapati, D. Saxena, H.H. Tan, C. Jagadish, Optical design of nanowire absorbers for wavelength selective photodetectors. Sci. Rep. 5, 15339 (2015)

    Article  ADS  Google Scholar 

  33. G. Ghosh, Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Opt. Commun. 163, 95 (1999)

    Article  ADS  Google Scholar 

  34. W.L. Bond, Measurement of the refractive indices of several crystals. J. Appl. Phys. 36(5), 1674–1677 (1965)

    Article  ADS  Google Scholar 

  35. G.M. Hale, M.R. Querry, Optical constants of water in the 200-nm to 200-m wavelength region. Appl. Opt. 12, 555 (1973)

    Article  ADS  Google Scholar 

  36. I.Z. Kozma, P. Krok, E. Riedle, Direct measurement of the group-velocity mismatch and derivation of the refractive-index dispersion for a variety of solvents in the ultraviolet. J. Opt. Soc. Am. B 22, 1479 (2005)

    Article  ADS  Google Scholar 

  37. Konstantinos Moutzouris, Myrtia Papamichael, Sokratis C. Betsis, Ilias Stavrakas, George Hloupis, Dimos Triantis, Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared. Appl. Phys. B 116(3), 617–622 (2013)

    Article  ADS  Google Scholar 

  38. Shanhui Fan, J .D. Joannopoulos, Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65(23), 235112 (2002)

    Article  ADS  Google Scholar 

  39. A. Rosenberg, M.W. Carter, J.A. Casey, M. Kim, R.T. Holm, R.L. Henry, C.R. Eddy, V.A. Shamamian, K. Bussmann, S. Shi, D.W. Prather, Guided resonances in asymmetrical GaN photonic crystal slabs observed in the visible spectrum. Opt. Express 13, 6564 (2005)

    Article  ADS  Google Scholar 

  40. J. Song, R.P. Zaccaria, M.B. Yu, X.W. Sun, Tunable Fano resonance in photonic crystal slabs. Opt. Express 14, 8812 (2006)

    Article  ADS  Google Scholar 

  41. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic crystals: Molding the flow of light, 2nd edn. (Princeton University Press, Princeton, 2007)

    MATH  Google Scholar 

Download references

Acknowledgements

Financial support from TUM.solar in the frame of the Bavarian Collaborative Research Project “Solar technologies go Hybrid” (SolTec), the excellence cluster Nanosystems Initiative Munich (NIM), and the Deutsche Forschungsgemeinschaft (DFG) via the Forschergruppe 1493 is gratefully acknowledged. Furthermore, we thank Gabi Riedl for the sputtering of the \(\hbox {SiO}_{2}\) shells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Winnerl.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winnerl, J., Kraut, M., Hudeczek, R. et al. GaN nanowire arrays for photocatalytic applications II: influence of a dielectric shell and liquid environments. Appl. Phys. B 125, 77 (2019). https://doi.org/10.1007/s00340-019-7187-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7187-y

Navigation