Skip to main content
Log in

Non-linear light scattering in photorefractive LiNbO3 crystals studied by Z-scan technique

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Experimental study of non-linear scattering (NLS) in nominally pure, Mg- and Zr-doped LiNbO3 crystals with a varying dopant concentration are reported in this paper. The study is undertaken by Z-scan technique with a cw-excitation at 514.5 nm. A modified open-aperture Z-scan experimental setup is used to evaluate the contributions of NLS in the observed transmission attenuation. Study of these open-aperture Z-scan traces shows that NLS has marked magnitude at moderate and high light intensities in undoped, strongly Zr-doped and Mg-doped LiNbO3, and a very significant magnitude in the moderately Zr-doped LiNbO3 crystals even at low intensities. NLS is related to the photoinduced light scattering (PILS), which is explained by holographic amplification of the seed scattering due to photorefractive effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Q. Wang Song, C.P. Zhang, P.J. Talbot, Self-defocusing, self-focusing, and speckle in LiNbO3 and LiNbO3Fe crystals. Appl. Opt. 32, 7266–7271 (1993)

    Article  ADS  Google Scholar 

  2. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990)

    Article  ADS  Google Scholar 

  3. R. DeSalvo, A. Said, D. Hagan, E. Van Stryland, M. Sheik-Bahae, Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids. IEEE J. Quantum Electron. 32, 1324–1333 (1996)

    Article  ADS  Google Scholar 

  4. B. Gu, J. Wang, J. Chen, Y.-X. Fan, J. Ding, H.-T. Wang, Z-scan theory for material with two- and three-photon absorption. Opt. Express 13, 9230–9234 (2005)

    Article  ADS  Google Scholar 

  5. M. Rumi, J.W. Perry, Two-photon absorption: an overview of measurements and principles. Adv. Opt. Photonics 2, 451–518 (2010)

    Article  ADS  Google Scholar 

  6. R. de Nalda, R. del Coso, J. Requejo-Isidro, J. Olivares, A. Suarez-Garcia, J. Solis, C.N. Afonso, Limits to the determination of the nonlinear refractive index by the Z-scan method. J. Opt. Soc. Am. B 19, 289–296 (2002)

    Article  ADS  Google Scholar 

  7. S.M. Kostritskii, M. Aillerie, E. Kokanyan, Investigation of nonlinear refraction and absorption in Mg- and Zr-doped LiNbO3 with the aid of Z-scan techniques. Proc. SPIE 9065, 906508 (2013)

    Article  Google Scholar 

  8. F.Z. Henari, K. Cazzini, F.E. Akkari, W.J. Blau, Beam waist changes in lithium niobate during Z-scan measurement. Appl. Phys. Lett. 78, 1373–1375 (1995)

    Google Scholar 

  9. MdM Parvez, Experimental studies on the nonlinear optical properties of LiNbO3 crystals. Am. J. Sci. Ind. Res. 6, 69–73 (2015)

    Google Scholar 

  10. L. Palfalvi, J. Hebling, G. Almasi, A. Peter, K. Polgar, K. Lengyel, R. Szipcs, Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3. J. Appl. Phys. 95, 902–908 (2004)

    Article  ADS  Google Scholar 

  11. Y. Chen, S.W. Liu, D. Wang, T. Chen, M. Xiao, Measurement of laser-induced refractive index change of inverted ferroelectric domain LiNbO3. Appl. Opt. 46, 7693–7696 (2007)

    Article  ADS  Google Scholar 

  12. S.M. Kostritskii, M. Aillerie, Z-scan study of nonlinear absorption in reduced LiNbO3 crystals. J. Appl. Phys. 111, 103504 (2012)

    Article  ADS  Google Scholar 

  13. S.M. Kostritskii, M. Aillerie, Optical damage in reduced Z-cut LiNbO3 crystals caused by longitudinal photovoltaic and pyroelectric fields. J. Appl. Phys. 111, 013519 (2012)

    Article  ADS  Google Scholar 

  14. Q.Q. Wang, J. Shi, B.F. Yang, H.L. Liu, G.G. Xiong, Q.H. Gong, Q.K. Xue, A Z-scan study of LiNbO3 thin film. Chin. Phys. Lett. 19, 677–679 (2002)

    Article  ADS  Google Scholar 

  15. N.Y. Kamber, G. Zhang, S. Liu, S.M. Mikha, W. Haidong, Study of the self-defocusing in LiNbO3:Fe, Mg crystals. Opt. Commun. 184, 475–483 (2000)

    Article  ADS  Google Scholar 

  16. J. Wen, ChY Gao, H.T. Yu, M. Zhao, J.J. Shang, X.L. Li, Investigation on third-order nonlinear optical properties of undoped LiNbO3 by modified Z-scan technique. Appl. Phys. B 123, 85 (2017)

    Article  ADS  Google Scholar 

  17. L. Palfalvi, K. Lengyel, A. Peter, J.A. Fulop, T. Reiter, J. Hebling, Theoretical and experimental development of the Z-scan method and its application for the characterization of LiNbO3. Proc. SPIE 7501, 75010F (2009)

    Article  ADS  Google Scholar 

  18. N. Venkatram, R.S.S. Kumar, D.N. Rao, Nonlinear absorption and scattering properties of cadmium sulphide nanocrystals with its application as a potential optical limiter. J. Appl. Phys. 100, 074309 (2006)

    Article  ADS  Google Scholar 

  19. V. Joudrier, P. Bourdon, F. Hache, C. Flytzanis, Nonlinear light scattering in a two-component medium: optical limiting application. Appl. Phys. B 67, 627 (1998)

    Article  ADS  Google Scholar 

  20. Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, J. Xu, Highly optical damage resistant crystal: Zirconium-oxide doped lithium niobate. Appl. Phys. Lett. 91, 081908 (2007)

    Article  ADS  Google Scholar 

  21. V. Degiorgio, P. Minzioni, G. Nava, I. Cristiani, W. Yan, D. Grando, N. Argiolas, M. Bazzan, M.V. Ciampolillo, A.M. Zaltron, C. Sada, Photorefractivity of zirconium-doped lithium niobate. Proc. SPIE 8071, 80710R (2011)

    Article  ADS  Google Scholar 

  22. S. González-Martínez, J. Castillo-Torres, J.A. Hernández, H.S. Murrieta, J.G. Murillo, R. Farias, Experimental evidence of a non-relationship between photorefractive inhibition and photoconductivity increase in LiNbO3:Mg. Opt. Commun. 282, 1212–1219 (2009)

    Article  ADS  Google Scholar 

  23. E. Kokanyan, E.J. Dieguez, New perspectives of lithium niobate crystals. Optoelectr. Adv. Mater. 2, 205–214 (2000)

    Google Scholar 

  24. https://goochandhousego.com/wp-content/uploads/2013/12/PPLN_DS.pdf

  25. https://goochandhousego.com/wp-content/uploads/2013/12/LNmatProperties.pdf

  26. http://www.roditi.com/SingleCrystal/LiNbO3/Magnesium-Doped.html

  27. J.-J. Liu, P.P. Banerjee, Q. Wang Song, Role of diffusive, photovoltaic, and thermal effects in beam fanning in LiNbO3. J. Opt. Soc. Am. B 11, 1688–1693 (1994)

    Article  ADS  Google Scholar 

  28. M.R.R. Gesualdi, C. Jacinto, T. Catunda, M. Muramatsu, V. Pilla, Thermal lens spectrometry in pyroelectric lithium niobate crystals. Appl. Phys. B 93, 879–883 (2008)

    Article  ADS  Google Scholar 

  29. F. Lüdtke, N. Waasem, K. Buse, B. Sturman, Light-induced charge-transport in undoped LiNbO3 crystals. Appl. Phys. B 105, 35–50 (2011)

    Article  ADS  Google Scholar 

  30. S.M. Kostritskii, O.G. Sevostyanov, Influence of defects on light-induced changes in refractive index of lithium niobate. Appl. Phys. B 65, 527–533 (1997)

    Article  ADS  Google Scholar 

  31. R. Ganeev, I. Kulagin, A. Ryasnyansky, R. Tugushev, T. Usmanov, Characterization of nonlinear optical parameters of KDP, LiNbO3 and BBO crystals. Opt. Commun. 229, 403–412 (2004)

    Article  ADS  Google Scholar 

  32. H. Li, F. Zhou, X. Zhang, W. Ji, Picosecond Z-scan study of bound electronic Kerr effect in LiNbO3 crystal associated with two-photon absorption. Appl. Phys. B 64, 659–662 (1997)

    Article  ADS  Google Scholar 

  33. R.K. Choubey, R. Trivedi, M. Das, P.K. Sen, P. Sen, S. Kar, K.S. Bartwal, R.A. Ganeev, Growth and study of nonlinear refraction and absorption in Mg doped LiNbO3 single crystals. J. Crys. Growth 311, 2597–2601 (2009)

    Article  ADS  Google Scholar 

  34. H. Badorreck, S. Nolte, F. Freytag, P. Bäune, V. Dieckmann, M. Imlau, Scanning nonlinear absorption in lithium niobate over the time regime of small polaron formation. Opt. Mater. Express 5, 2729–2741 (2015)

    Article  ADS  Google Scholar 

  35. H. Qiao, J. Xu, Q. Wu, X. Yu, Q. Sun, X. Zhang, G. Zhang, T.R. Volk, An increase of photorefractive sensitivity in In:LiNbO3 crystal. Opt. Mater. 23, 269–272 (2003)

    Article  ADS  Google Scholar 

  36. G. Zhang, Q. Li, P. Ho, S. Liu, Z. Wu, R.R. Alfano, Dependence of specklon size on laser beam size via photo-induced light scattering in LiNbO3:Fe. Appl. Opt. 25, 2955–2958 (1986)

    Article  ADS  Google Scholar 

  37. M. Goulkov, M. Imlau, Th Woike, Photorefractive parameters of lithium niobate crystals from photoinduced light scattering. Phys. Rev. B 77, 235110 (2008)

    Article  ADS  Google Scholar 

  38. M.A. Ellabban, M. Fally, R.A. Rupp, T. Woike, M. Imlau, Holographic scattering and its applications, in Recent Research Developments in Applied Physics, vol. 4, ed. by S. Pandalai (Transworld Publishing, India, 2001), pp. 241–275

    Google Scholar 

  39. M. Imlau, Th. Woike, M. Fally, M. Ellaban, R. A. Rupp and M. Goulkov, Non-linear light scattering in polar oxides at the example of strontium-barium-niobate. in R. Wasser, U. Bottger, S. Tiedke (Editors) Proceedings of POLECER Conference, Chapter VII, 148 (2003)

  40. O. Althoff, E. Kratzig, Strong light-induced refractive index changes in LiNbO3. Proc. SPIE 1273, 12–19 (1990)

    Article  ADS  Google Scholar 

  41. I. Turek, N. Tarjányi, Opt. Express 15, 10782 (2007)

    Article  ADS  Google Scholar 

  42. L. Wan, Y. Yuan, G. Assanto, Switching and self-pulsing with dynamic holographic gratings in photorefractive waveguides. Opt. Commun. 74, 361–364 (1990)

    Article  ADS  Google Scholar 

  43. J. Sathian, E. Jaatinen, Reducing residual amplitude modulation in electro-optic phase modulators by erasing photorefractive scatter. Opt. Express 21, 12309–12317 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

S.M. Kostritskii, O.G. Sevostyanov, and E. Kokonyan thank the RFBR for support under Grant no. 18-52-05012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Kostritskii.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostritskii, S., Aillerie, M., Kokanyan, E. et al. Non-linear light scattering in photorefractive LiNbO3 crystals studied by Z-scan technique. Appl. Phys. B 125, 160 (2019). https://doi.org/10.1007/s00340-019-7274-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7274-0

Navigation