Skip to main content
Log in

Synthesis, characterization and investigation of linear and infra-red nonlinear optical properties of TiO2/ZnO core/shell nanospheres

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Titanium dioxide nanoparticles have been synthesized by the chemical co-precipitation technique and then they have been coated with zinc oxide shell layers using a refluxing method to form TiO2/ZnO core/shell nanoheterojunctions. The physicochemical properties of as-synthesized core/shell nanoheterojunctions have been examined using X-ray diffraction (XRD), Fourier transfer infra-red spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). Photoluminescence (PL) emission spectroscopy has been carried out to analyze the linear optical characteristics at an excitation wavelength of 270 nm. A red shift towards longer wavelengths has been detected in NBE-related energies of TiO2/ZnO core/shell nanoheterojunctions compared to the sole TiO2 nanostructures. Third-order nonlinear optical studies have been performed by a single-beam Z-scan technique using a pulsed Nd-YVO4 laser system at a wavelength of 1064 nm. Third-order nonlinear refractive indices have been estimated as 10–12 m2/W. The sign of nonlinear refractive indices has been found to be negative, indicating self-defocusing behavior in the near infra-red region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.-R. Jia, J. Yao, D.-J. Wu, Y. Cheng, X.-J. Liu, Opt. Commun 405, 43 (2017)

    ADS  Google Scholar 

  2. B.J. Messinger, K.U. Von Raben, R.K. Chang, P.W. Barber, Phys. Rev. B 24, 649 (1981)

    ADS  Google Scholar 

  3. E.M. Kim, S.S. Elovikov, T.V. Murzina, A.A. Nikulin, O.A. Aktsipetrov, M.A. Bader, G. Marowsky, Phys. Rev. Lett 95, 227402 (2005)

    ADS  Google Scholar 

  4. T.V. Murzina, I.A. Kolmychek, J. Wouters, T. Verbiest, O.A. Aktsipetrov, JOSA B 29, 138 (2012)

    ADS  Google Scholar 

  5. A. Krasnok, M. Tymchenko, A. Alu, Mater. Today 21, 8 (2018)

    Google Scholar 

  6. J.A. Miragliotta, Johns Hopkins APL Tech. Dig 16, 349 (1995)

    Google Scholar 

  7. G. Banfi, V. Degiorgio, D. Ricard, Adv. Phys 47, 447 (1998)

    Google Scholar 

  8. U. Kreibig, M. Vollmer, Optical properties of metal clusters, (Springer Science & Business Media, 2013).

  9. E. Leobandung, L. Guo, S.Y. Chou, Appl. Phys. Lett 67, 2338 (1995)

    ADS  Google Scholar 

  10. E. Garmire, Opt. Express 21, 30532 (2013)

    ADS  Google Scholar 

  11. V.I. Gavrilenko, T.V. Murzina, G. Mizutani, Nonlinear optics of nanostructures. Phys. Res. Int 2012, 1 (2012)

    Google Scholar 

  12. H. Long, A. Chen, G. Yang, Y. Li, P. Lu, Thin Solid Films 517, 5601 (2009)

    ADS  Google Scholar 

  13. H. Long, G. Yang, A. Chen, Y. Li, P. Lu, Opt. Commun 282, 1815 (2009)

    ADS  Google Scholar 

  14. L.-H. Guo, Y.-W. Wang, Y.-Q. Jiang, S. Xiao, J. He, Chin. Phys. Lett 34, 77803 (2017)

    Google Scholar 

  15. S. Saalinraj, K.C. Ajithprasad, Mater. Today Proc 4, 4372 (2017)

    Google Scholar 

  16. T. Hashimoto, T. Yoko, S. Sakka, Bull. Chem. Soc. Jpn 67, 653 (1994)

    Google Scholar 

  17. A.H. Yuwono, J. Xue, J. Wang, H.I. Elim, W. Ji, J. Electroceram. 16, 431 (2006)

    Google Scholar 

  18. V. Gayvoronsky, A. Galas, E. Shepelyavyy, T. Dittrich, V.Y. Timoshenko, S.A. Nepijko, M.S. Brodyn, F. Koch, Appl. Phys. B 80, 97 (2005)

    ADS  Google Scholar 

  19. I. Rocha-Mendoza, S. Camacho-L pez, Y.Y. Luna-Palacios, Y. n Esqueda-Barr n, M.A. Camacho-L pez, M. Camacho-L pez, G. Aguilar, Opt. Laser Technol 99, 118 (2018)

  20. S. Valligatla, A. Chiasera, S. Varas, P. Das, B.N.S. Bhaktha, A. ukowiak, F. Scotognella, D.N. Rao, R. Ramponi, G.C. Righini, Opt. Mater. (Amst) 50, 229 (2015)

  21. Y.-B. Han, J.-B. Han, Z.-H. Hao, J. Nanosci. Nanotechnol 11, 5024 (2011)

    Google Scholar 

  22. L. Irimpan, B. Krishnan, V.P.N. Nampoori, P. Radhakrishnan, J. Coll. Interface Sci 324, 99s (2008)

    ADS  Google Scholar 

  23. N. Selvi, S. Sankar, K. Dinakaran, J. Mater. Sci. Mater. Electron 26, 2271 (2015)

    Google Scholar 

  24. Y.L. Chueh, C.H. Hsieh, M.T. Chang, L.J. Chou, C.S. Lao, J.H. Song, J.Y. Gan, Z.L. Wang, Adv. Mater 19, 143 (2007)

    Google Scholar 

  25. A. Sakthisabarimoorthi, S.A.M.B. Dhas, M. Jose, Mater. Sci. Semicond. Process 71, 69 (2017)

    Google Scholar 

  26. M. El Haouari, A. Talbi, E. Feddi, H. El Ghazi, A. Oukerroum, F. Dujardin, Opt. Commun 383, 231 (2017)

    ADS  Google Scholar 

  27. M. Cristea, A. Radu, E.C. Niculescu, J. Lumin. 143, 592 (2013)

    Google Scholar 

  28. X. Fu, Z. Wu, M. Lei, L. Zhang, H. Chen, W. Tang, Z. Peng, Mater. Lett 104, 76 (2013)

    Google Scholar 

  29. M. Hosseini, A. Haghighatzadeh, B. Mazinani, Opt. Mater. (Amst) 92, 1 (2019)

    ADS  Google Scholar 

  30. S.S. Kanmani, K. Ramachandran, Renew. Energy 43, 149 (2012)

    Google Scholar 

  31. V. Kumari, V. Kumar, B.P. Malik, R.M. Mehra, D. Mohan, Opt. Commun 285, 2182 (2012)

    ADS  Google Scholar 

  32. A. Haghighatzadeh, B. Mazinani, M. Shokouhimehr, L. Samiee, Desalin. Water Treat 92, 145 (2017)

    Google Scholar 

  33. J.M. Abisharani, S. Devikala, R.D. Kumar, M. Arthanareeswari, P. Kamaraj, Mater. Today Proc 14, 302 (2019)

    Google Scholar 

  34. A.N. Kadam, D.P. Bhopate, V.V. Kondalkar, S.M. Majhi, C.D. Bathula, A.-V. Tran, S.-W. Lee, J. Ind. Eng. Chem 61, 78 (2018)

    Google Scholar 

  35. V. Madhubala, T. Kalaivani, Appl. Surf. Sci 449, 584 (2018)

    ADS  Google Scholar 

  36. K. Siwi ska-Stefa ska, A. Kubiak, A. Piasecki, J. Goscianska, G. Nowaczyk, S. Jurga, T. Jesionowski, Materials (Basel) 11, 841 (2018)

  37. S.K. Cushing, F. Meng, J. Zhang, B. Ding, C.K. Chen, C.-J. Chen, R.-S. Liu, A.D. Bristow, J. Bright, P. Zheng, ACS Catal 7, 1742 (2017)

    Google Scholar 

  38. D.K. Pallotti, L. Passoni, P. Maddalena, F. Di Fonzo, S. Lettieri, J. Phys. Chem. C 121, 9011 (2017)

    Google Scholar 

  39. B. Li, H. Li, C. Yang, B. Ji, J. Lin, T. Tomie, AIP Adv. 9, 85321 (2019)

    Google Scholar 

  40. S. Mathew, A. kumar Prasad, T. Benoy, P.P. Rakesh, M. Hari, T.M. Libish, P. Radhakrishnan, V.P.N. Nampoori, C.P.G. Vallabhan, J. Fluoresc 22, 1563 (2012)

  41. R. Ranjith, V. Renganathan, S.-M. Chen, N.S. Selvan, P.S. Rajam, Ceram. Int. 45, 12926 (2019)

    Google Scholar 

  42. K.-S. Jeon, S.-D. Oh, Y.D. Suh, H. Yoshikawa, H. Masuhara, M. Yoon, Phys. Chem. Chem. Phys. 11, 542 (2009)

    Google Scholar 

  43. D. Vasudevan, R.R. Gaddam, A. Trinchi, I. Cole, Jss. Alloys Compd 636, 395 (2015)

    Google Scholar 

  44. L. Zhang, M. Jaroniec, Appl. Surf. Sci 430, 2 (2018)

    ADS  Google Scholar 

  45. E. Vasilaki, M. Vamvakaki, N. Katsarakis, Langmuir 34, 9122 (2018)

    Google Scholar 

  46. M.R. Sharifimehr, K. Ayoubi, E. Mohajerani, Opt. Mater. (Amst) 49, 147 (2015)

    ADS  Google Scholar 

  47. J.L.J. Pérez, R. Gutiérrez-Fuentes, J.F.S. Ramírez, O.U.G. Vidal, D.E. Téllez Sánchez, Z.N.C. Pacheco, A.C. Orea, J.A.F. García, Adv. Nanoparticles 2, 223 (2013)

  48. W. Balogun, Y.K. Sanusi, A.O. Aina, Inter. J. Dev. Res 08, 18486–18490 (2018)

    Google Scholar 

  49. M. Kiani, A. Haghighatzadeh, J. Inorg. Organomet. Polym. Mater. (2020) 1–10

  50. A. Haghighatzadeh, Opt. Laser Technol. 126, 106114 (2020)

    Google Scholar 

Download references

Acknowledgement

The present study was partially supported by Ahvaz Branch of Islamic Azad University and the authors would like to thank the Research Council for their generous support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Haghighatzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghighatzadeh, A., Mazinani, B. Synthesis, characterization and investigation of linear and infra-red nonlinear optical properties of TiO2/ZnO core/shell nanospheres. Appl. Phys. B 126, 177 (2020). https://doi.org/10.1007/s00340-020-07529-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07529-x

Navigation