Skip to main content
Log in

Partitioning of grain-size components of estuarine sediments and implications for sediment transport in southwestern Laizhou Bay, China

  • Geology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Sediment transport in estuarine systems has been of increasing interest for scientists during the past few decades. However, the mechanisms for sediment redistribution remain unclear. We characterized in detail sediment transport in the Xiaoqing River estuary using the mathematical Weibull function to partitiongrain-size components of surface sediments in the southwestern Laizhou Bay, Northeast China. Four partitioned components: finer than 4, 4.6–12.5, 23.4–63.3, and 67.1–132.6 μm were interpreted in terms of hydrodynamic conditions. During sediment transport, silt grains were suspended and moved seaward from three depositional centers, whereas fine-grained sands moved generally landward. Overall, sediments are transported clockwise in a generally NNE direction near shore and then turn eastward offshore. The mathematical partitioning method showed a great potential for future estuarine environmental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ashley G M. 1978. Interpretation of polymodal sediments. Journal of Geology, 86: 411–421.

    Article  Google Scholar 

  • Asselman N E M. 1999. Suspended sediment dynamics in a large drainage basin: the River Rhine. Hydrological Processes, 13: 1 437–1 450.

    Article  Google Scholar 

  • Calhoun R S, Fletcher C H, Harney J N. 2002. A budget of marine and terrigenous sediments, Hanalei Bay, Hawaiian Islands. Sedimentary Geology, 150: 61–87.

    Article  Google Scholar 

  • Carriquiry J D, Sanchez A, Camacho-Ibar V F. 2001. Sedimentation in the northern Gulf of California after cessation of the Colorado River discharge. Sedimentary Geology, 144: 37–62.

    Article  Google Scholar 

  • Chen B A. 1982. Characteristics of sediment dynamics around the Xiaoqinghe estuary. Marine Science Bulletin, 1: 57–70. (in Chinese with English abstract)

    Google Scholar 

  • Chen B, Huang H, Mei B. 2009. Characteristics of sediment transportation near Xiaoqing estuary. Marine Geology & Quaternary Geology, 29: 35–42. (in Chinese with English abstract)

    Google Scholar 

  • Cheng G D, Xue C T. 1997. Sedimentary Geology of the Yellow River Delta. Geological Publishing House, Beijing. (in Chinese)

    Google Scholar 

  • Chu Z X, Sun X G, Zhai S K, Xu K H. 2006. Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: based on remote sensing images. Marine Geology, 227: 13–30.

    Article  Google Scholar 

  • De Falco G, Molinaroli E, Baroli M, Bellacicco S. 2003. Grain-size and compositional trends of sediments from Posidonia oceanica meadows to beach shore, Sardinia, western Mediterranean. Estuarine, Coastal and Shelf Science, 58: 299–309.

    Article  Google Scholar 

  • Du T Q, Huang H J, Yan L W, Liu G W, Song Z J. 2008. Characteristics of suspended matters in winter water off the Xiaoqinghe River estuary. Marine Geology & Quaternary Geology, 28: 41–48. (in Chinese with English abstract)

    Google Scholar 

  • Duman M, Avci M, Duman S, Demirkurt E, Duzbastilar M K. 2004. Surficial sediment distribution and net sediment transport pattern in Lzmir Bay, western Turkey. Continental Shelf Research, 24: 965–981.

    Article  Google Scholar 

  • Feng X L, Qi H S, Wang T, Li A L, Lin L. 2004. Geomorphological evolution and geological disasters analysis in Chengdao sea area of the Yellow River delta. Rock and Soil Mechanics, 25: 17–20. (in Chinese with English abstract)

    Google Scholar 

  • Gao S. 1996. A FORTRAN program for grain size trend analysis to define net sediment transport pathways. Computers & Geosciences, 22: 449–452.

    Article  Google Scholar 

  • Gao S. 2009. Grain size trend analysis: principle and applicability. Acta Sedimentologica Sinica, 27: 826–836. (in Chinese with English abstract)

    Google Scholar 

  • Gao S, Collins M B. 1991. A critique of the “McLaren Method” for defining sediment-transport paths. Journal of Sedimentary Petrology, 61: 143–146.

    Article  Google Scholar 

  • Gao S, Collins M B. 1992. Net sediment-transport patterns inferred from grain-size trends, based upon definition of “transport vectors”. Sedimentary Geology, 80: 47–60.

    Article  Google Scholar 

  • Gao S, Collins M B, Lanckneus J, De Moor G, Van Lancker V. 1994. Grain-size trends associated with net sedimenttransport patterns: an example from the Belgian continental shelf. Marine Geology, 121: 171–185.

    Article  Google Scholar 

  • Gao S M, Li Y F, An F T, Wang Y M, Yan F H. 1989. The Generating and the Sedimentary Environment of Yellow River Delta. Science Press, Beijing. (in Chinese)

    Google Scholar 

  • Golden Software, Inc. 2002. Surfer® User’s Guide. Golden Software, Inc., Colorado, USA. 640p.

    Google Scholar 

  • IOCAS (Marine Geology Laboratory, Institute of Oceanology, Chinese Academy of Sciences) 1985. Bohai Sea Geology. Science Press, Beijing. 232p. (in Chinese)

    Google Scholar 

  • Jiang W, Wang H J. 2005. Distribution of suspended matter and its relationship with sediment particle size in Laizhou Bay. Oceanologia et Limnologia Sinica, 36: 98–103. (in Chinese with English abstract)

    Google Scholar 

  • Kleinbaum D, Kupper L, Muller K, Nizam A. 1998. Applied regression analysis and other multivariable methods (3rd edition). Duxbury Press, Pacific Grove. 816p.

    Google Scholar 

  • Kranck K, Smith P C, Milligan T G. 1996a. Grain-size characteristics of fine-grained unflocculated sediments I: ‘One-round’ distributions. Sedimentology, 43: 589–596.

    Article  Google Scholar 

  • Kranck K, Smith P C, Milligan T G. 1996b. Grain-size characteristics of fine-grained unflocculated sediments II: ‘Multi-round’ distributions. Sedimentology, 43: 597–606.

    Article  Google Scholar 

  • Le Roux J P. 1994a. Net sand sediment-transport patterns inferred from grain-size trends, based upon definition of transport vectors—comment. Sedimentary Geology, 90: 153–156.

    Article  Google Scholar 

  • Le Roux J P. 1994b. An alternative approach to the identification of sand sediment-transport paths based on a grain-size trends. Sedimentary Geology, 94: 97–107.

    Article  Google Scholar 

  • Li G, Wei H, Han Y, Chen Y. 1998a. Sedimentation in the Yellow River delta, part I: flow and suspended sediment structure in the upper distributary and the estuary. Marine Geology, 149: 93–111.

    Article  Google Scholar 

  • Li G, Wei H, Yue S, Cheng Y, Han Y. 1998b. Sedimentation in the Yellow River delta, part II: suspended sediment dispersal and deposition on the subaqueous delta. Marine Geology, 149: 113–131.

    Article  Google Scholar 

  • Li G, Zhuang K, Wei H. 2000. Sedimentation in the Yellow River delta. Part III. Seabed erosion and diapirism in the abandoned subaqueous delta lobe. Marine Geology, 168: 129–144.

    Article  Google Scholar 

  • Liu J, Saito Y, Wang H, Zhou L, Yang Z. 2009a. Stratigraphic development during the Late Pleistocene and Holocene offshore of the Yellow River delta, Bohai Sea. Journal of Asian Earth Sciences, 36: 318–331.

    Article  Google Scholar 

  • Maillet G M, Poizot E, Sabatier F, Vella C, Méar Y. 2011. Pattern of sediment transport in a microtidal river mouth using geostatistical sediment-transport analysis. Journal of Sedimentary Research, 81: 138–152.

    Article  Google Scholar 

  • Martin J M, Zhang J, Shi M C, Zhou Q. 1993. Actual flux of the Huanghe (Yellow River) sediment to the Western Pacific ocean. Netherlands Journal of Sea Research, 31: 243–254.

    Article  Google Scholar 

  • McCave I N. 1978. Grain-size trends and transport along beaches: an example from eastern England. Marine Geology, 28: 43–51.

    Article  Google Scholar 

  • McLaren P. 1981. An interpretation of trends in grain-size measures. Journal of Sedimentary Petrology, 51: 611–624.

    Google Scholar 

  • McLaren P, Bowles D. 1985. The effects of sediment-transport on grain-size distributions. Journal of Sedimentary Petrology, 55: 457–470.

    Google Scholar 

  • McLaren P, Collins M B, Gao S, Powys R I L. 1993. Sediment dynamics of the Severn Estuary and inner Bristol Channel. Journal of Geological Society, 150: 589–603.

    Article  Google Scholar 

  • McLaren P, Little D I. 1987. The effects of sediment-transport on contaminant dispersal: an example from Milford Haven. Marine Pollution Bulletin, 18: 586–594.

    Article  Google Scholar 

  • Middleton G V. 1976. Hydraulic interpretation of sand size distribution. Journal of Geology, 84: 405–426.

    Article  Google Scholar 

  • Nordstrom K F. 1981. Differences in grain-size distribution with shoreline position in a spot environment. Northeast ern Geology, 3: 252–258.

    Google Scholar 

  • Påsse T. 1997. Grain size distribution expressed as Tanhfunctions. Sedimentology, 44: 1 011–1 014.

    Google Scholar 

  • Pang J Z, Si S H. 1979. The estuary changes of Huanghe River I: changes in modern time. Oceanologia et Lomnologia Sinica, 10: 136–141. (in Chinese with English abstract)

    Google Scholar 

  • Pascoe G A, McLaren P, Soldate M. 2002. Impact of offsite sediment transport and toxicity on remediation of a contaminated estuarine bay. Marine Pollution Bulletin, 44: 1 184–1 193.

    Article  Google Scholar 

  • Peng J, Chen S L, Dong P. 2010. Temporal variation of sediment load in the Yellow River basin, China, and its impacts on the lower reaches and the river delta. Catena, 83: 135–147.

    Article  Google Scholar 

  • Pettijohn F J, Ridge J D. 1932. A textural variation series of beach sands from Cedar Point, Ohio. Journal of Sedimentary Petrology, 2: 76–88.

    Google Scholar 

  • Poizot E, Méar Y. 2010. Using a GIS to enhance grain size trend analysis. Environmental Modelling & Software, 25: 513–525.

    Article  Google Scholar 

  • Poizot E, Méar Y, Biscara L. 2008. Sediment trend analysis through the variation of granulometric parameters: a review of theories and applications. Earth-Science Reviews, 86: 15–41.

    Article  Google Scholar 

  • Poulos S E, Collins M B. 1994. Effluent diffusion and sediment dispersion at microtidal river mouth, predicted using mathematical models. Estuarine, Coastal and Shelf Science, 38: 189–206.

    Article  Google Scholar 

  • Qiao S, Shi X, Zhu A, Liu Y, Bi N, Fang X, Yang G. 2010. Distribution and transport of suspended sediments off the Yellow River (Huanghe) mouth and the nearby Bohai Sea. Estuarine, Coastal and Shelf Science, 86: 337–344.

    Article  Google Scholar 

  • Qiao S, Shi X, Saito Y, Li X, Yu Y, Bai Y, Liu Y, Wang K, Yang G. 2011. Sedimentary records of natural and artificial Huanghe (Yellow) River channel shifts during the Holocene in the southern Bohai Sea. Continental Shelf Research, 31: 1 336–1 342.

    Article  Google Scholar 

  • Qin X G, Cai B G, Liu T S. 2005. Loess record of the aerodynamic environment in the East Asia monsoon area since 60,000 years before present. Journal of Geophysical Research, 110: B01204.

    Article  Google Scholar 

  • Ren M E, Zhu X M. 1994. Anthropogenic influences on changes in the sediment load of the Yellow River, China, during the Holocene. The Holocene, 4: 314–320.

    Article  Google Scholar 

  • Ren R, Chen S, Dong P, Liu F. 2012. Spatial and temporal variations in grain size of surface sediments in the littoral area of Yellow River delta. Journal of Coastal Research, 28: 44–53.

    Article  Google Scholar 

  • Rojas E M, Le Roux J P. 2003. Determinación de vectores de transporte, utilizando información granulométrica: applicación al delta tipo Gilbert del río Pescado, Lago Llanquíhue, X Región, Chile. Proceedings X Congreso Geológico Chileno, Sociedad Geológica de Chile, Santiago (CD Rom).

    Google Scholar 

  • Rojas E M, Le Roux J P, Cisterminar M. 2000. Metodología y algoritmos que permiten determinar las direcciones de transporte de sedimentos utilizando parámetros granulométricos: caso teórico y aplicación a una cuenca activa. Abstract Volume IX Congreso Geológico Chileno, Vol. 1 Sociedad Geolóógica de Chile, Santiago. p.539–543.

    Google Scholar 

  • Saito Y, Wei H, Zhou Y, Nishimura A, Sato Y, Yokota S. 2000. Delta progradation and chenier formation in the Huanghe (Yellow River) delta, China. Journal of Asian Earth Sciences, 18: 489–497.

    Article  Google Scholar 

  • Self R P. 1977. Longshore variation in beach sands, Nautla area, Veracruz, Mexico. Journal of Sedimentary Research, 47: 1 437–1 443.

    Google Scholar 

  • Sun D H. 2004. Monsoon and westerly circulation changes recorded in the late Cenozoic aeolian sequences of northern China. Global and Planetary Change, 41: 63–80.

    Article  Google Scholar 

  • Sun D H, Bloemendal J, Rea D K, Vandenberghe J, Jiang F C, An Z S, Su R X. 2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sedimentary Geology, 152: 263–277.

    Article  Google Scholar 

  • Sun L. 1992. Characteristics of distribution and deposition of suspended sediments in nearshore area of south Laizhou Bay. Coastal Engineering, 11: 49–54. (in Chinese with English abstract)

    Google Scholar 

  • Wang H, Yang Z, Li G, Jiang W. 2006. Wave climate modeling on the abandoned Huanghe (Yellow River) delta lobe and related deltaic erosion. Journal of Coastal Research, 22: 906–918.

    Article  Google Scholar 

  • Wang H, Yang Z, Saito Y, Liu J P, Sun X, Wang Y. 2007. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): impacts of climate change and human activities. Global and Planetary Change, 57: 331–354.

    Article  Google Scholar 

  • Wei H, Hainbucher D, Pohlmann T, Feng S, Suendermann J. 2004. Tidal-induced Lagrangian and Eulerian mean circulation in the Bohai Sea. Journal of Marine Systems, 44: 141–151.

    Article  Google Scholar 

  • Wheatcroft R A, Wiberg P L, Alexander C R, Bentley S J, Drake D E, Harris C K, Ogston A S. 2007. Postdepositional alternation and preservation of sedimentary strata. In: Nittrouer C A, Austin J A, Field M E et al. eds. Continental Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy. Blackwell Publishing. p.101–155.

    Chapter  Google Scholar 

  • Wright L, Yang Z, Bornhold B, Keller G, Prior D, Wiseman W, Fan Y, Su Z. 1986. Short period internal waves over the Huanghe (Yellow River) delta front. Geo-Marine Letters, 6: 115–120.

    Article  Google Scholar 

  • Xiao J L, Chang Z G, Si B, Qin X G, Itoh S, Lomtatidze Z. 2009. Partitioning of the grain-size components of Dali Lake core sediments: evidence for lake-level changes during the Holocene. Journal of Paleolimnology, 42: 249–260.

    Article  Google Scholar 

  • Xu G, Liu J, Wen C, Kong X. 2010a. Sedimentary characteristics and provenance of surfacial sediments in the west South Yellow Sea. Marine Geology & Quaternary Geology, 30: 49–56. (in Chinese with English abstract)

    Article  Google Scholar 

  • Xu X Y, Yi L, Yu H J, Li N S, Shi X F. 2010b. The differences of grain-size parameters estimated with graphic and moment methods in coastal sediments. Acta Oceanologica Sinica, 32: 80–86. (in Chinese with English abstract)

    Google Scholar 

  • Xue C T. 1993. Historical changes in the Yellow River delta, China. Marine Geology, 113: 321–329.

    Article  Google Scholar 

  • Xue C T, Cheng G D. 1989. Shelly ridges in west coast of Bohai Sea and Holocene Yellow River Delta system. In: Yang Z, Lin H ed. Quaternary Processes and Events in China Offshore and Onshore Areas, China Ocean Press, Beijing. p.117–125. (in Chinese)

    Google Scholar 

  • Yang Z, Shen W. 1991. Unstabilities of Underwater Slope of Yellow River Estuary. Qingdao University of Oceanology Press, Qingdao. (in Chinese)

    Google Scholar 

  • Ye Q C. 1982. The geomorhological structure of the Yellow River delta and its evolution model. Acta Geographica Sinica, 49: 349–363. (in Chinese with English abstract)

    Google Scholar 

  • Yi L, Yu H, Xu X, Liu Y, Yao J, Zhao N. 2010. Influences of carbonate contents on the grain-size measurements of borehole sediments from southern shore of Laizhou Bay. Advances in Marine Science, 28: 325–331. (in Chinese with English abstract)

    Google Scholar 

  • Yi L, Hongjun H J, Ortiz J D, Xu X Y, Qiang X K, Huang H J, Shi X F, Deng C L. 2012. A reconstruction of late Pleistocene relative sea level in the south Bohai Sea, China, based on sediment grain-size analysis. Sedimentary Geology, 281: 88–100.

    Article  Google Scholar 

  • Zhang R S. 1984. Land-forming history of the Huanghe River delta and coastal plain of north Jiangsu. Acta Geographica Sinica, 39: 173–184. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Yi  (易亮).

Additional information

Supported by the China Postdoctoral Science Foundation (No. 2012M520369), the National Natural Science Foundation of China (Nos. 40906047, 41076031, 40925012), the State Oceanic Research Project for Public Benefit of China (No. 201105020), and the National Basic Research Program of China (973 Program) (Nos. 2010CB951201, 2012CB821900)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Yi, L., Chen, S. et al. Partitioning of grain-size components of estuarine sediments and implications for sediment transport in southwestern Laizhou Bay, China. Chin. J. Ocean. Limnol. 31, 895–906 (2013). https://doi.org/10.1007/s00343-013-2304-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-013-2304-y

Keyword

Navigation